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Abstract
Inflammatory M1 spectrum macrophages protect from infection but can cause inflammatory

disease and tissue damage, whereas alternatively activated/M2 spectrum macrophages

reduce inflammation and promote tissue repair. Modulation of macrophage phenotype may

be therapeutically beneficial and requires further understanding of the molecular programs

that control macrophage differentiation. A potential mechanism by which macrophages dif-

ferentiate may be through microRNA (miRNA), which bind to messenger RNA and post-

transcriptionally modify gene expression, cell phenotype and function. We hypothesized

that the inflammation-associated miRNA, miR-155, would be required for typical develop-

ment of macrophage inflammatory state. miR-155 was rapidly up-regulated over 100-fold in

inflammatory M1(LPS + IFN-γ), but not M2(IL-4), macrophages. Inflammatory genes Inos,
Il1b and Tnfa and their corresponding protein or enzymatic products were reduced up to

72% in miR-155 knockout mouse M1(LPS + IFN-γ) macrophages, but miR-155 deficiency

did not affect expression of the M2-associated gene Arg1 in M2(IL-4) macrophages. Addi-

tionally, a miR-155 oligonucleotide inhibitor efficiently suppressed Inos and Tnfa gene
expression in wild-type M1(LPS + IFN-γ) macrophages. Comparative transcriptional profil-

ing of unstimulated and M1(LPS + IFN-γ) macrophages derived from wild-type (WT) and

miR-155 knockout (KO) mice revealed that half (approximately 650 genes) of the signature

we previously identified in WT M1(LPS + IFN-γ) macrophages was dependent on miR-155.

Real-Time PCR of independent datasets confirmed that miR-155 contributed to suppres-

sion of its validated mRNA targets Inpp5d, Tspan14, Ptprj andMafb and induction of Inos,
Il1b, Tnfa, Il6 and Il12. Overall, these data indicate that miR-155 plays an essential role in

driving the inflammatory phenotype of M1(LPS+ IFN-γ) macrophages.
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1. Introduction
Macrophages are found in all tissues of the body and help maintain homeostasis during embry-
onic development and throughout life [1,2]. In response to inflammatory stimuli (e.g., infection
or tissue injury), resident macrophages become activated and blood monocytes are recruited to
the inflammatory focus where they differentiate into macrophages. Collectively, the functions
of resident and recruited macrophages are essential for ensuring tissue sterility and restoring
homeostasis through the induction of wound healing and repair [3,4].

In vivo, cues in the tissue microenvironment, including cytokines and/or pathogen-or dan-
ger-associated molecular patterns (PAMPs or DAMPS, respectively) from pathogens or dying/
damaged cells promote inflammatory macrophage phenotype and function [3,5]. Evidence for
the existence of a spectrum or wheel of plastic macrophage phenotypes in vivo has been gath-
ered in recent years [6,7]. Such varied phenotypes would be required to adapt to different and/
or overlapping environmental stimuli and in vivo roles. In vitro, discrete macrophage pheno-
type models have been created to model some of these phenotypes [8]. For example, macro-
phages stimulated with interferon-γ (IFN-γ) and TLR agonists (e.g., lipopolysaccharide (LPS))
differentiate into one of the “classically” activated inflammatory M1 spectrum macrophages
[8–12], further defined by the recently proposed nomenclature as M1(LPS + IFN-γ) macro-
phages [10]. Other M1 spectrum macrophages include M(LPS) and M(IFN-γ) stimulated mac-
rophages [9,10]. Conversely, stimulating macrophages with anti-inflammatory cytokines like
IL-4 or IL-13 has been described to generate alternatively activated, M2 or M(IL-4) macro-
phages [13–15]. In vivo, these cytokines are produced by T helper 2 (Th2) lymphocytes during
immune responses to parasitic infections or allergens.

Murine inflammatory M1(LPS + IFN-γ) macrophages express cytokines such as TNF-α, IL-
1β, IL-6 and IL-12, chemokines such as CCL5 and CXCL8 and surface molecules such as
CD38, CD80 and CD86 [16,17]. They also express the enzyme inducible nitric oxide synthase
(iNOS) which transforms arginine into the oxidizing and microbicidal product nitric oxide
(NO) for resistance to bacterial infection [3,8–10,12,18]. However, excess or unresolved
inflammatory macrophage responses can cause chronic inflammation and tissue damage.
Indeed, inflammatory macrophages have been implicated in the pathogenesis of several inflam-
matory conditions including atherosclerosis, diabetes and glomerulonephritis [8,19,20]. In the
nervous system, inflammatory macrophages have been associated with multiple sclerosis,
amyotrophic lateral sclerosis, stroke, spinal cord injury and traumatic brain injury [21–25].

In contrast, murine M2(IL-4) macrophages up-regulate mannose receptor (Mrc1, a.k.a.
CD206) and have increased phagocytic and antigen presentation capabilities relative to M1
cells [26]. Murine M2(IL-4) macrophages also strongly up-regulate arginase-1 (Arg-1), shifting
arginine metabolism into polyamines including ornithine and urea [13,27]. This is an alterna-
tive pathway to the induction of iNOS and is less toxic to microbes and vulnerable post-mitotic
host cells (e.g., neurons) [28]. A switch fromM1-like to M2-like macrophages is thought to
occur during natural resolution of inflammation and, as a result, M2-like macrophages are
often described as having anti-inflammatory or reparative functions. However, excessive or
uncontrolled M2-like macrophage activity may cause diseases such as fibrosis or asthma [20].

Understanding the mechanisms that control macrophage gene transcription may lead to new
tools or therapies that can be used to manipulate divergent macrophage populations in vivo. Micro-
RNAs (miRNAs) are small RNAs, 19 to 24 nucleotides in length, that act as master regulators of
gene expression, differentiation and cell function [29,30]. miRNAs inhibit protein translation and/
or induce mRNA degradation by binding complementary sequences on the 3’ untranslated region
(UTR) of target gene mRNA [31]. Emerging data indicate that miRNAs control large transcrip-
tional networks associated with immune cells and CNS resident microglia [32–38].
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Here, we report that miR-155 is critically important for controlling the signature of inflam-
matory M1(LPS + IFN-γ) macrophages. Indeed, macrophages from miR-155 knockout (KO)
mice as well as wild-type (WT) macrophages treated with a miR-155 oligonucleotide inhibitor
failed to express M1 macrophage markers, including Nos2, Tnfa and Il1b in response to stimu-
lation with LPS + IFN-γ. Comparative transcriptional profiling of unstimulated and M1(LPS
+ IFN-γ) macrophages derived from wild-type (WT) and miR-155 knockout (KO) mice
revealed that half (approximately 650 genes) of the signature previously identified in WTM1
(LPS + IFN-γ) macrophages [17] was dependent on miR-155. We confirmed that miR-155 is
required to suppress validated miR-155 targets Inpp5d, Tspan14, Ptprj and Mafb in M1 macro-
phages. The loss of these miR-155 targets in inflammatory M1(LPS + IFN-γ) macrophages
may mediate miR-155 dependent increases in inflammatory mediators and costimulatory/
adhesion molecules. In conclusion, we have identified miR-155 as a pivotal regulator of the M1
(LPS + IFN-γ) inflammatory macrophage signature and a potential therapeutic target in
inflammatory diseases.

2. Materials and Methods

2.1. Mice
Wild-type (WT) or miR-155 KO (B6.Cg-Mir155tm1.1Rsky/J) mice on the C57BL/6J back-
ground (Jackson Laboratories) were bred and kept in specific pathogen-free conditions at
The Ohio State University Laboratory Animal Resources. All animal experiment procedures
were approved under Ohio State University’s IACUC protocol # 2009A0036-R1 and
2013A00000151 to ensure the humane care and use of animals. Euthanasia was performed by
cervical dislocation after ketamine/xylazine anesthesia or CO2 treatment.

2.2. Bone marrow derived macrophages (BMDM)
To generate BMDM, the bone marrow cells from femurs and tibias from mice were harvested
and cultured as previously described [25]. Briefly, isolated cells were incubated in Dulbecco’s
Modified Eagle Media (DMEM, Mediatech, Herndon, VA) supplemented with 10% heat-
inactivated fetal bovine serum (FBS) (Life Technologies, Grand Island, NY)), 1% penicillin/
streptomycin, 1% glutamine, and 20% L929 cell supernatant (containing macrophage colony
stimulating factor). On day 7 in culture the cells were counted and replated at a density of 0.5–
1.0x106 cells/well (24-well plate). No significant differences in CD11b+F480+ percentage were
observed between WT and miR-155 KO BMDMs (WT: 80 ± 2.3, n = 4, KO: 78 ± 1.5, n = 4,
t test p = NS; one experiment representative of 3 independent experiments with n�3 each).
Cells were classically or M1-activated (M1(LPS + IFN-γ) condition) with LPS (10 mg/ml,
Sigma-Aldrich) + IFN-γ (20ng/mL, E-bioscience, San Diego, CA) or alternatively/M2-activated
(M2(IL-4) condition) with IL-4 (20ng/mL, E-bioscience) or received media alone (unstimu-
lated M0 condition) for 24 hours. Cells were harvested at the indicated time-points for RNA
isolation, protein isolation or flow cytometry. The 24-hour time-point was chosen as it has
been shown by us and others to be sufficient for expression of murine M1 and M2 markers
[11,17,39] and fits with the first-line-of-defense function of innate immune cells. Later time-
points were not ideal as untreated macrophages kept in culture have been shown to induce M2
marker expression [17].

2.3. RNA Isolation
To examine miRNA expression, cells were isolated using the miRVana isolation kit (Life Tech-
nologies) according to manufacturer specifications. RNA quality/concentration was quantified
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using a Nanodrop spectrophotometer (ThermoScientific, Wilmington, DE) and/or Agilent
bioanalyzer (Agilent Technologies, Santa Clara, CA). Samples were stored at -80°C until
analysis.

2.4. miRNA and Real-Time PCR
miRNA expression was determined by Taqman Real-Time PCR using miR-27, miR-29b, miR-
155, miR-223, miR-124 and sno-202 primer and probe sets (Life Technologies), according to
manufacturer’s instructions. Briefly, after an initial cDNA transcription using specific miRNA
primers to generate cDNA using 10 ng RNA as a template, PCR was performed using Taqman
universal PCR mix and gene-specific miRNA primers and probe mixture. Reaction mixture
was run in an Applied Biosystems 7900 Real-Time PCR machine with denaturation step at
95°C for 10 minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds and primer
annealing/extension at 60°C for 60 seconds. miRNA expression was normalized to the small
RNA sno202.

mRNA gene expression was determined using SYBR Green or Taqman quantitative Real-
Time PCR on cDNA template. cDNA was generated from 500–1000 ng RNA per sample using
random hexamer primers (pN6) and Superscript II (Life Technologies), according to manufac-
turer’s instructions. Product was amplified with 0.5 μM forward and reverse primers of gene of
interest and SybrGreen Mastermix (Life Technologies) or with Taqman primers and probe sets
and Taqman Mastermix (Life Technologies) on an Applied Biosystems 7900 Real-Time PCR.
The primer sequences for SybrGreen primer sets were the following: Nos2 (F: GGCAGCCTGT
GAGACCTTT; R: TTGGAAGTGAAGCGTTTCG), Il1b (F: CAGGCTCCGAGATGAACAA
C; R: GGTGGAGAGCTTTCAGCTCATAT) and Tnfa (F: CTGTGAAGGGAATGGGTGTT;
R: GGTCACTGTCCCAGCATCTT). All other genes used Taqman primer and probe sets
commercially available from Applied Biosystems. Expression of target genes was normalized to
hypoxanthine guanidine phosphoribosyltransferase (Hprt) as a loading control. Real-Time
PCR data was analyzed using the comparative Ct (ΔΔCT) method or the standard curve
method depending on whether the test gene andHprt gene amplification efficiencies were
comparable or not [40,41].

2.5. Protein analysis
Lysates and media were collected for multiplex protein array analysis. Lysates were collected in
RIPA buffer + 0.5% bovine serum albumin. Samples were analyzed using a system that uses
microbeads and flow cytometry (Bio-Plex Suspension Array System, Bio-Rad Laboratories
Inc., Hercules, CA). Fluorescent-coded beads are conjugated to defined antibodies that recog-
nize the cytokines/chemokines in this quantitative technique. The cell lysates or control media
were first incubated for 90 min with all of the microbeads types. After washing, the samples
were incubated with biotinylated secondary antibodies also specific for the target cytokines for
30 min. The samples were washed again, incubated with streptavidin-coupled phycoerythrin
reporter for 10 min, and then subjected to a final wash. The samples were then diluted in buffer
and underwent flow cytometry analysis. At least 100 microbeads were assayed for every sam-
ple. The concentrations of each cytokine were calculated based on the inclusion of a standard
curve with defined amounts of every analyte.

2.6. Flow cytometry
The bone marrow, lymph nodes and spleen of WT and miR-155 KO mice (n = 6-9/mice/
group, three independent experiments) were harvested and processed to a single cell suspen-
sion. Cells were blocked with anti-mouse FcR antibody (CD16/CD32, BD, Product # 553141)
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for 15 min at 4°C in FACS buffer (PBS with 2% FBS and 1 mM EDTA) and subsequently surface
stained with antibodies for CD11b (clone M1/70 or IgG2b, k isotype, Biolegend), CD11c (Clone
N418 or Armenian hamster IgG isotype, BD), Ly6C (clone HK1.4 or rIgG2a, k isotype, Biolegend)
and Ly6G (clone 1A8 or rIgG2a, k isotype, Biolegend), F480 (clone BM8 or rIgG2a, k isotype, Bio-
legend) for 15 min at 4°C. Cells were washed three times with FACS buffer and run through a BD
FACSCanto Flow Cytometer (BD, NJ). Data was analyzed with FlowJo (Treestar, OR).

2.7. miRNA mimic and inhibitor transfection
Mouse bone marrow-derived macrophages were transfected overnight with 200 nM of double-
stranded Power miRNA inhibitors (Exiqon Inc, Woburn, MA) or 7 nM single stranded precur-
sor miRNAmimics (ThermoFisher) using the Transit-TKO Reagent (Mirus Bio LLC, Madison,
WI). Power Inhibitor sequence were GTGTAACACGTCTATACGCCCA for nonsense control
(NS) (Exiqon 199020–00) and GTGTAACACGTCTATACGCCCA for miR-155 (Exiqon
428232–00). miRNA mimic sequences/catalog number were AM17111 for miR control and
UUAAUGCUAAUUGUGAUAGGGGU/AM17100 for miR-155. Cells were transfected for
approximately 18 hours before transfection reagents were removed and macrophages received
exogenous cytokines to stimulate differentiation. Macrophages received either LPS (10 ng/mL)
+ IFN-γ (20 ng/mL) to stimulate the M1(LPS+ IFN-γ) condition, IL-4 (20ng/mL) to stimulate
the M2(IL-4) condition, or media alone for the unstimulated (M0) condition. Cells were subse-
quently lysed for RNA 24 hours post-stimulation.

2.8. Microarray
Total RNA was prepared from bone marrow-derived macrophages of 3 WT and 3 miR-155
KO mice treated in M0 or M1 conditions (as defined in M&M section 2.2) for 24 hours using
the miRVana isolation kit (Ambion). RNA quality was analyzed by the RNA 6000 Nano Chip
(Agilent, and only samples with an RNA Integrity Number (RIN)>7 were used for further
processing. One KO sample had insufficient RNA quality for microarray and was therefore
removed from analysis. RNA was processed and hybridized to the Affymetrix Mouse 430 2.0
chips at the Ohio State University Comprehensive Cancer Center (OSUCC) Microarray facil-
ity. Raw data were normalized with the RMA algorithm implemented in the ‘‘Expression File
Creator”module from the GenePattern software package [42]. Data were visualized with the
Multiplot modules from GenePattern. Array data are deposited at the Gene Expression Ommi-
bus (GEO) NCBI database with accession numbers GSE69607 (WT) and GSE77452 (KO).

2.9. Ingenuity Pathway Analysis
A gene list was compiled from the Affymetrix array results for ingenuity pathway analysis (IPA)
using the genes that had a�2 fold change (FC) difference betweenWTM1 vs. WTM0 but a
<2FC between KOM1 vs. KOM0macrophages [17] plus genes that had a�2FC betweenWT
M1 and KOM1macrophages. A Core Analysis was run on this data set to determine the pathways
most affected by the loss of miR-155. Additionally, the miR Target Filter was used to identify poten-
tial direct miR-155 targets from the full list of microarray probes, identified as any genes that were
down-regulated in theWTM1 vs. WTM0 were considered potential direct targets of miR-155.

2.10. Statistical analysis
Statistical significance was determined using unpaired t-test (two-tail, equal SD) or analysis of
variance (ANOVA) followed by Tukey post-hoc test. For microarray analysis, p values were
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Benjamin-Hochberg adjusted for multiple comparisons. Statistical significance was determined
to be p<0.05. Analysis was completed using GraphPad Prism or GenePattern.

3. Results

3.1. miR-155 is selectively up-regulated in classically activated M1(LPS
+ IFN-γ) macrophages
Specific miRNA expression signatures have been associated with discrete cellular lineages or
phenotypes [32,36]. We analyzed expression of miR-27b, miR-29b, miR-155, miR-124 and
miR-223 in bone marrow-derived mouse macrophages differentiated in M0 (unstimulated),
M1(LPS + IFN-γ) and M2(IL-4) conditions. These miRNAs were analyzed because they have
been linked to inflammatory responses in which macrophages comprise the primary subtype
of responding leukocytes [32,35–37,43]. Of these miRNAs, miR-155 was the most highly up-
regulated in response to M1(LPS + IFN-γ) stimulation conditions (fold change (FC) ± standard
deviation (SD) = 182 ± 13, ANOVA followed by post-hoc Bonferroni test p< 0.005). In con-
trast, miR-155 was not up-regulated in M2(IL-4) macrophages (1.0 ± 0.153) (Fig 1A).

Fig 1. miR-155 is associated with the classically activatedmacrophage phenotype. Expression of
miRNAs was determined by Taqman Real-Time PCR and expressed as mean relative expression (+ SEM) in
(A)macrophages stimulated in vitro for 24 hours in M0, M1, and M2 (n = 3) conditions; expression relative to
M0 condition; Post-hoc ANOVA, **p<0.005. (B)M1 and M2macrophages activated in vitro over a 48 hour
period; expression relative to 0 hour pre-stimulation time-point. Unpaired t-test, ***p<0.001. Results
reproduced in two independent experiments.

doi:10.1371/journal.pone.0159724.g001
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To reveal the temporal pattern of miR-155 expression during macrophage activation, we
quantified the relative expression of miR-155 at 0, 6 and 24 hours post-stimulation (Fig 1B).
Expression of miR-155 in M1(LPS + IFN-γ) macrophages increased significantly (t-test,
p<0.0001) and reached its maximum expression by 6 hours post-stimulation. In contrast, M2
(IL-4) macrophages did not up-regulate miR-155 at any of these time points. Collectively,
these data indicate that induction of miR-155 is specifically associated with differentiation of
classically activated M1(LPS + IFN-γ) macrophages.

3.2. Genetic miR-155 deficiency abrogates expression of classically
activated M1 macrophage markers
Genetic loss-of-function experiments were used to determine whether markers of inflamma-
tory macrophage phenotype are dependent on miR-155 by using the M1(LPS + IFN-γ) M1
macrophage model [8–12]. BMDM isolated fromWT (n = 5) or miR-155 KO (n = 5) mice
were kept unstimulated (M0) or stimulated in M1(LPS + IFN-γ) or M2(IL-4) conditions for 24
hours. RT-PCR was used to analyze expression of canonical M1 macrophage markers (Inos,
Il1b and Tnfa) [9,10] and the M2-associated gene, Arg1 (Fig 2). As expected, Nos2, Il1b and
Tnfa were expressed at higher levels in M1(LPS + IFN-γ) vs. M2(IL-4) WT macrophages and
Arg1 was more highly expressed in M2(IL-4) vs. M1(LPS + IFN-γ) macrophages. miR-155 KO
macrophages showed striking reductions in expression of the three M1 genes and the proteins/
effector molecules they encode (reduced up to 72%) (Fig 2A–2F). Restoring miR-155 in miR-
155 KO macrophages recovered inflammatory cytokine production (Fig 2G). In contrast,
expression of the M2 gene, Arg1, was not significantly different between WT and KOM2 (IL-
4) macrophages (Fig 2H, t-test, not significant).

To ensure that impaired gene expression in miR-155-deficient macrophages was not caused
by a defect in immune system development in genetically modified mice, we quantified the rel-
ative proportion of monocytes, macrophages, dendritic cells and polymorphonuclear cells in
different lymphoid tissues of WT and miR-155 KO mice. No significant differences in any
myeloid cell population were found in the bone marrow, spleen or lymph nodes (S1 Fig). Simi-
larly, we found no differences in the percentages of CD11b+F480+ percentage obtained for WT
and miR-155 KO BMDMs (data not shown).

Next, an oligonucleotide-based inhibitor was used to block miR-155 in WTmacrophages
during induction of the M1(LPS + IFN-γ) phenotype. As a control, macrophages were trans-
fected with a scrambled oligonucleotide inhibitor that lacks specificity for miR-155. 24 hours
post-activation, expression of Nos2 and TnfamRNA was analyzed using RT-PCR. The miR-
155 inhibitor suppressed Inos and Tnfa expression by 75% and 85%, respectively, in M1(LPS +
IFN-γ) macrophages as compared to macrophages transfected with the scrambled inhibitor
(Fig 3).

3.3. miR-155 is necessary for the full expression of the M1(LPS + IFN-γ)
macrophage signature
To determine the global effect of miR-155 on regulating gene expression in M1 macrophages,
we performed gene expression profiling on miR-155 KO macrophages. Affymetrix M430 2.0
arrays were hybridized with complementary DNA (cDNA) isolated from KOmacrophages cul-
tured in M0 or M1(LPS + IFN-γ) conditions. Fig 4A shows that, when compared to the base-
line KOM0 condition, 177 genes (�2FC, p<0.05, in red, S1 Table) were up-regulated and 494
genes (�0.5FC, p<0.05, in blue, S2 Table) were down-regulated in M1(LPS + IFN-γ) KO mac-
rophages. When compared to WT macrophages activated under identical conditions [17],
~700 fewer genes (or ~50%) changed in miR-155 KO macrophages.
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Fig 2. Reduced classically activated M1marker expression in miR-155 knock-out (KO) macrophages. (A) Inducible
nitric oxide synthase (Nos2), (B) IL1b, (C) Tumor Necrosis Factor-α (Tnfa) (H) and Arginase-1 (Arg1) expression was
determined by Real-Time PCR in wild-type (WT, n = 8–11) and miR-155 knockout (KO n = 8–12) bone marrow-derived
macrophages in vitro activated in M1 or M2 conditions for 24 hours in three independent experiments. Gene expression is
expressed as a percentage +/- SEM of theWTM1 condition. Unpaired t-test, *p<0.05, **p<0.005. Relative concentration of
(D) nitric oxide (NO), (E) IL-1β protein and (F) TNF-α protein was determined using Griess assay (for NO) or Bio-Plex
Suspension Array (For IL-1β and TNF-α) in cell lysates fromWT (n = 5) and miR-155 KO (n = 5) bone marrow-derived
macrophages in vitro activated in M1 or M2 conditions for 24 hours. Individual protein concentrations expressed as fraction
of total protein concentration in either M0 or M1 condition. (G) IL1b expression was determined by Real-Time PCR inWT
and KO bone marrow-derived macrophages transfected with a scrambled miR control (n = 5) or a miR-155 oligonucleotide
mimic (n = 5) and activated in M0 (untreated), M1 (LPS+IFN-γ) or M2(IL-4) conditions for 24 hours. Gene expression is
expressed as a percentage +/- SEM of the scrambled M1 condition. Unpaired t-test, ***p<0.0005, ****p<0.00005. (A-G)
Data from 2–3 independent experiments.

doi:10.1371/journal.pone.0159724.g002
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To determine the impact of miR-155 on the canonical M1 phenotype, we compared the
induction of canonical M1(LPS + IFN-γ) genes (full list and FC in S3 Table) between WT (Fig
4B, in red) and miR-155 KO macrophages (Fig 4C, in red). The majority of M1 markers (22
out of 25 gene probes) decreased their expression in KO vs. WTM1(LPS + IFN-γ) macro-
phages. In most cases, these genes were found under the 2FC line (Fig 4C), indicating that
their induction is highly dependent on miR-155. We also evaluated the effect of miR-155 loss
on 15 genes that we recently found to be exclusively upregulated in M1(LPS + IFN-γ) macro-
phages [17]. These genes are highlighted in green in Fig 4B and 4C. Since the markers exam-
ined correspond to only a small portion of the M1(LPS + IFN-γ) signature, it is likely that miR-
155 has more wide-ranging effects on the inflammatory M1 signature.

To reveal the scope of the M1(LPS + IFN-γ) macrophage signature that is completely
dependent on miR-155 (no longer 2FC up- or down-regulated in KO macrophages), the previ-
ously defined WTM1(LPS + IFN-γ) signature [17] (M1 Up Signature shown in red and M1
Down Signature shown in blue) was highlighted on the KOM1 vs. M0 plot (Fig 5A). Most of
the WTM1(LPS + IFN-γ) signature (about 72% of the WTM1 Up gene signature and 33% of
the WTM1 Down signature) fell within the 2FC lines. Overall, miR-155 deficiency resulted in
loss of 51% of the M1 signature.

Fig 3. miR-155 inhibitor reducesM1marker expression. (A) Inducible nitric oxide synthase (Nos2) and
(B) Tumor Necrosis Factor (Tnfa) expression was determined by Real-Time PCR in wild-type bone marrow-
derived macrophages in vitro activated in M0 or M1 conditions for 24 hours and transfected with a scrambled
(n = 3) or a miR-155 oligonucleotide inhibitor (n = 3–4). Gene expression is expressed as a percentage +/-
SEM of the scrambled M1 condition. Unpaired t-test, *p<0.05. Data reproduced in two independent
experiments.

doi:10.1371/journal.pone.0159724.g003
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Utilizing standard 2FC threshold values (red lines in Fig 5A) is helpful to identify WTM1
(LPS + IFN-γ) signature genes that fully require miR-155 for expression. However, we sus-
pected miR-155 also had subtler, but no less important, quantitative effects on the inflamma-
tory M1 signature. For example, we observed a ~260 FC increase in IL-6 expression in WTM1
condition as opposed to only a ~4 FC increase in KOM1 condition. This important change in
IL-6 would have been overlooked in the previous analysis because its expression remains above
the 2FC line in both the WT and KOM1 signatures. To reveal these additional effects of miR-
155 deletion, we used a FC vs. FC plot. FC vs. FC plots compare the magnitude of gene expres-
sion changes brought about by M1(LPS + IFN-γ) activation in WTmacrophages or KO macro-
phages. Genes that are induced/repressed to the same extent in WT and KOmacrophages fall
on the y = x line, while genes that are induced/repressed to a different extent will deviate from
this line. When the data were plotted on a FC vs. FC plot (Fig 5B), we observed that the gene
population data deviated from the y = x trend line, adjusting instead to the y = 1.003x0.5956

trend line (represented in teal blue in Fig 5B). This shift in the gene expression trend line
shows that genes that are up- or down-regulated in WTM1 conditions are changed to a lesser
extent in miR-155 KO macrophages. This indicates that, besides the large�2FC effects previ-
ously identified in Fig 4, miR-155 has a widespread dampening effect on the magnitude of
gene expression changes caused by macrophage stimulation in M1 conditions.

3.4. Increased alternatively activated macrophage gene expression in
classically activated miR-155 deficient macrophages
We next determined whether the KOM1(LPS + IFN-γ) macrophage phenotype resembled the
opposing M2 macrophage phenotype, since macrophage phenotype is thought to be dependent
on gene expression [6,7]. To determine if miR-155 loss promotes an M2 macrophage pheno-
type under inflammatory conditions, we highlighted a number of previously described M2
macrophage markers [14] (in blue, listed in S4 Table) on the FC vs. FC plot (Fig 5C). As
expected, most genes were down-regulated in the WTM1 vs. WTM0 FC comparison. A subset
of these genes was more highly expressed (above the y = x line) in KO than in WTM1(LPS
+ IFN-γ) macrophages (FC values listed in S4 Table). These genes included mannose receptor
1 (Mrc1), early growth response 2 (Egr2), cathepsin c (Ctsc), purinergic receptor P2Y
(P2ry14), avian musculoaponeurotic fibrosarcoma (v-maf) AS42 oncogene homolog (C-Maf),
histamine N-methyl transferase (Hnmt), adenosine kinase (Adk), insulin-like growth factor
(Igf1), TGF-β receptor 2 (Tgfbr2) and lysosomal acid lipase A (Lipa). This indicates that loss of
miR-155 gene regulation prevents the full down-regulation of M2(IL-4) genes that normally
occurs under the influence of strong inflammatory activation signals including IFN-γ and LPS.

3.5. The miR-155 dependent M1(LPS + IFN-γ) signature is enriched in
inflammatory signaling pathways
The mRNA profiling data provided an opportunity to identify basic M1 macrophage “func-
tions” that are dependent on miR-155 expression. Ingenuity Pathway Analysis (IPA) was
applied to the 2FC Up and Down signature M1(LPS + IFN-γ) signature genes that were no

Fig 4. Classically activatedmacrophage signature in wild-type andmiR-155 knockout macrophages.
Fold Change (FC) vs. Mean Expression Value (MEV) plot of microarray data highlighting 2 FC or higher up-
regulated genes (red, p�0.05) or down-regulated genes (blue, p�0.05) in (A) knockout (KO) M1 to M0
macrophages comparison (n = 3). (B, C) FC vs. MEV plot with previously described classical M1 markers
highlighted (in red) and the top 15 M1-exclusive genes (identified in [17]) most decreased in KOM1
macrophages (in green) in the WTM1 vs. M0 comparison (B) and the KOM1 vs. M0 comparison (C). Red
lines represent a +/- 2FC cut-off.

doi:10.1371/journal.pone.0159724.g004
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Fig 5. miR-155 is required for expression of the full classically activatedmacrophage signature. (A)
Fold Change (FC) vs. Mean Expression Value (MEV) plot of knockout (KO) M1 vs. M0 microarray data, with
highlighted classical wild-type (WT) M1 signature genes as defined in this study. Genes more than 2FC up-
regulated in WTM1 macrophages (red genes in Fig 4A) are shown in red and genes more than 2FC down-
regulated in WTM1 macrophages (blue genes in Fig 4A) are shown in blue. (B) WT M1/M0 FC vs. KOM1/
M0 FC plot highlighting the WTM1 Up signature (in red) andWTM1 Down signature (in blue). The black line
indicates the x = y trendline expected if all gene probes were similarly up- or down-regulated exactly the same
in KOM1 andWTM1macrophages (FC KOM1 vs KOM0 = FCWTM1 vsWTM0). The blue line indicates
the power regression trendline that genes more closely adhered to, represented by y = 1.003x0.5956, R2 =
0.50052. (C) WT M1/M0 FC vs. KOM1/M0 FC plot highlighting classical M2 genes. Red lines represent a +/-
2FC cut-off. More than a single appearance of a gene symbol indicates different probes hybridizing the same
gene transcript were present.

doi:10.1371/journal.pone.0159724.g005
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longer induced or repressed in KOM1(LPS + IFN-γ) macrophages, revealing that the genes pro-
moted by miR-155 (red molecules designated in Fig 6) encode proteins critical for pathways
involved in bactericidal functions, inflammatory responses and costimulation and enhancement
of B and Th1 T lymphocyte responses. Several genes involved in TLR and IFN-γ receptor (IFN-
γR) signaling also were regulated by miR-155. Among these were Janus kinase 2 (Jak2), involved
in IFN-γR signaling, and interleukin-1 receptor-associated kinase 1 (Irak2 and 3) and V-Akt
Murine Thymoma Viral Oncogene Homolog 1 (Akt), involved in TLR signaling. Additionally,
expression of downstream effector molecules associated with inflammatory responses and bacte-
rial killing, such as IL-1β, IL-6, TNF-α, NO and IL-12, were miR-155 dependent. Similarly,
expression of several membrane molecules involved in macrophage-mediated stimulation of
adaptive inflammatory responses (e.g., CD40, CD86, CD49e and Ccr7) were increased inWT
M1(LPS + IFN-γ) but were not induced in KOM1(LPS + IFN-γ) macrophages.

Fig 6. miR-155 dependent M1 signature transcriptional networks. (A). Model of molecules involved in miR-155
dependent M1 activated transcriptional networks, identified by Ingenuity Pathway Analysis. miR-155-dependent M1 genes
up-regulated more than 2 Fold Change (FC) in wild-type (WT) M1vs. WTM0macrophages that were up-regulated to a lesser
extent in knockout (KO) M1 vs. KOM0 macrophages are highlighted in red.

doi:10.1371/journal.pone.0159724.g006
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3.6. Discovery of miR-155 target mRNAs repressed in M1(LPS + IFN-γ)
macrophages
miRNAs generally regulate gene expression via binding to the 3’UTR of specific gene tran-
scripts and repressing their expression. To identify miR-155 targets that promoted the inflam-
matory M1(LPS + IFN-γ) phenotype when repressed, we searched for experimentally observed
or high/moderate probability predicted miR-155 targets using the miR Target Filter function
in IPA. To filter the list based on potential importance in inducing the M1(LPS + IFN-γ) phe-
notype, we first focused on the 370 genes (S5 Table) down-regulated in WTM1 vs. WTM0
macrophages. When expression of these 370 candidate miR-155 target genes was compared
between KOM1(LPS + IFN-γ) and KOM0 samples, we observed that ~80% of these genes
were up-regulated (i.e., re-induced) to some extent in the absence of miR-155 (highlighted in
red in Fig 7A) (FC>1; KOM1 vs. WTM1 condition) (Fig 7A) and 18 genes were more than
2FC up-regulated (Table 1). 16 of these genes were significantly inversely correlated (Pearson
correlation, p<0.05) with miR-155 (Table 1).

To visualize the relationship between miR-155, the miR-155 repressed genes identified in
Table 1 and the M1(LPS + IFN-γ) up-regulated genes identified through IPA analysis, a hierar-
chical clustering analysis was performed on these genes. This highlighted the strong inverse
relationship between miR-155 and its repressed genes, as well as an inverse relationship
between miR-155 repressed genes and IPA-selected M1(LPS + IFN-γ) Up genes (Fig 7B).

Fig 7. Identification of candidate miR-155 targets associated with M1 phenotype. (A) Fold Change (FC) vs. Mean Expression Value (MEV) plot of
knockout (KO) M1 vs. wild-type (WT) M1 microarray data with miR-155 targets (high or moderate predicted targets and experimentally observed targets)
that were down-regulated�2FC in WTM1 vs. WTM0 highlighted in red. 18 target genes were up-regulated more than 2 FC in KOM1 vs. KOM0. (B)
Hierarchical clustering analysis of WTM0, WTM1, KOM0 and KOM1 samples based on expression of miR-155, IPA identified miR-155 dependent M1 Up
genes from Fig 6 and top 18 miR-155 targets identified in (A). (C) Inpp5d, (D)Mafb, (E) Tspan14, and (F) Bat5 expressions were determined by Real-Time
PCR in wild-type (WT, n = 3) and miR-155 knockout (KO n = 3) bone marrow-derived macrophages in vitro activated in M1 or M2 conditions for 24 hours.
Data shown is representative of 2–3 independent experiments. Gene expression is expressed as a percentage +/- SEM of theWTM0 condition. Unpaired
t-test, *p<0.05, **p<0.005. (F)

doi:10.1371/journal.pone.0159724.g007
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Interestingly, KOM1(LPS + IFN-γ) macrophages clustered more closely with WTM0 or KO
M0 macrophages than with WTM1(LPS + IFN-γ) macrophages through this analysis, suggest-
ing a link between the pattern of expression of this group of genes and the switch fromM0 to
M1(LPS + IFN-γ) inflammatory phenotype that is mediated by miR-155.

Real-Time PCR on independent datasets confirmed that miR-155 contributed to suppres-
sion of its validated targets Inpp5d, Tspan14, Ptprj andMafb (Fig 7C–7F, respectively) in M1
(LPS + IFN-γ) macrophages. miR-155 deficiency restored Inpp5d, Tspan14 and Ptprj expres-
sion to WTM0 levels indicating that miR-155 is required for their suppression in M1(LPS +
IFN-γ) macrophages. Overall, these data identify various candidate genes that may mediate
inflammatory M1(LPS + IFN-γ) phenotype when repressed by miR-155.

4. Discussion
Inflammatory macrophages can cause inflammatory disease and tissue damage. Therefore,
understanding the molecular programs that control inflammatory M1 phenotype may provide
novel targets for therapeutic intervention. Here, we show that rapid and robust M1(LPS+ IFN-
γ)-selective up-regulation of miR-155 promotes Nos2, Tnfa and Il1b inflammatory gene
expression, as well as their protein products. miR-155 had a strong influence on gene expres-
sion, controlling half of the 2FC M1(LPS + IFN-γ) signature, as well as milder widespread
effects, modulating smaller gene expression shifts in the remainder of the M1(LPS + IFN-γ)
signature. Among the top miR-155 inversely correlated genes that may mediate these effects,
we identified and validated miR-155 targets Inpp5d, Tspan14, Ptprj andMafB.

miRNA play a critical role in shaping cellular phenotype [44]. Within the immune system,
miRNA can modulate the development of opposing Th1 versus Th2 T helper cell phenotypes

Table 1. miR-155 targets up-regulated more than 2 fold-change in KOM1(LPS + IFN-γ) vs. WTM1(LPS + IFN-γ) macrophages.

Gene miR-155
Correlation

WTM1 vs
WTM0

KOM1 vs
WTM1

KOM1 vs
KOM0

Symbol Description R p FC p FC p FC p

Bat5 HLA-B associated transcript 5 -0.96 0.0001 0.51 0.0027 2.07 0.0015 1.10 0.261

Mafb v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (avian) -0.95 0.0001 0.37 0.0001 2.37 0.0385 0.91 0.599

Bach1 BTB and CNC homology 1 -0.94 0.0001 0.40 0.0003 2.95 0.0082 1.09 0.559

Maf avian musculoaponeurotic fibrosarcoma (v-maf) AS42 oncogene homolog -0.93 0.0001 0.16 0.0024 2.92 0.0221 0.49 0.023

Ptprj protein tyrosine phosphatase, receptor type J -0.90 0.0003 0.50 0.0082 2.09 0.0103 1.10 0.433

Il6ra interleukin 6 receptor, alpha -0.90 0.0004 0.49 0.0013 2.14 0.0162 1.21 0.441

Gpr65 G-protein coupled receptor 65 -0.87 0.0008 0.52 0.0103 2.58 0.0051 1.35 0.055

Tspan14 tetraspanin 14 -0.85 0.0014 0.54 0.0001 2.65 0.0008 1.36 0.027

Inpp5d inositol polyphosphate-5-phosphatase D -0.84 0.0022 0.64 0.0012 2.11 0.0002 1.34 0.005

Tcf7l2 transcription factor 7-like 2, T-cell specific, HMG-box -0.83 0.0029 0.49 0.0034 2.52 0.0500 1.41 0.267

Prkar1b protein kinase, cAMP dependent regulatory, type I beta -0.82 0.0034 0.61 0.0079 2.05 0.0311 1.29 0.283

Rcbtb2 regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing
protein 2

-0.79 0.0058 0.20 0.0150 2.56 0.0099 0.45 0.106

Enpp1 ectonucleotide pyrophosphatase/phosphodiesterase 1 -0.77 0.0088 0.22 0.0002 2.03 0.0100 0.42 0.032

Glul glutamate-ammonia ligase (glutamine synthetase) -0.65 0.0393 0.26 0.0021 2.20 0.0264 0.56 0.036

F13a1 coagulation factor XIII, A1 subunit -0.65 0.0393 0.19 0.0333 3.71 0.0761 0.50 0.406

Jarid2 jumonji, AT rich interactive domain 2 -0.64 0.0434 0.64 0.0015 2.56 0.0000 1.87 0.002

Ikbke inhibitor of kappaB kinase epsilon -0.54 0.1038 0.80 0.0780 2.15 0.0237 1.73 0.073

Olfml3 olfactomedin-like 3 -0.26 0.4596 0.96 0.8588 2.39 0.0350 3.11 0.051

R: Pearson correlation R value; FC: Fold Change; p: p value

doi:10.1371/journal.pone.0159724.t001
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that mediate autoimmune and allergic disease [32,43]. However, the role of miRNA in control-
ling macrophage differentiation and effector functions is just beginning to be elucidated.
Among 5 miRNA important in inflammatory or LPS responses [32,35–37,43], miR-155 was
the most dramatically up-regulated in classically activated M1(LPS + IFN-γ) but not alterna-
tively activated M2(IL-4) conditions. These results corroborate recent findings, which showed
that miR-155 was differentially expressed in murine [45] and human [46,47] M1 and M2 mac-
rophages. Although it is known that miR-155 is important in regulating inflammation [48], its
key function in regulating distinct macrophage effector cells is novel. Other miRNAs, such as
miR-27a, miR-29b, miR-125a, miR-146a, miR-122, miR-181a, miR-204-5p and miR-451 are
differentially up-regulated in M1 and M2 spectrum macrophages [45,46]. However, miR-155 is
unique in that it is very quickly (within 6 hours) and robustly (around a 100–180 FC increase)
up-regulated during M1 differentiation. Elegant studies by O’Connell et al have shown that
microbial and pro-inflammatory stimuli independently promote miR-155 [49]. For example,
IFN-γ or TNF-α were shown to independently up-regulate miR-155 in the absence of LPS
stimulus [49]. Overall, miR-155 is downstream of many inflammatory stimuli via NF-kB and
other pathways [49]. The convergence of multiple inflammatory pathways into miR-155
expression highlights the importance of what are the consequences of miR-155 expression on
the inflammatory phenotype of macrophages. Additional work will be required to exactly
quantify IFN-γ's synergistic role in miR-155 up-regulation and downstream effects on M1 phe-
notype. Whether the drastic up-regulation of miR-155 in M1 macrophages is necessary to glob-
ally suppress many direct targets or very efficiently suppress a few key targets remains to be
determined. Our data show that miR-155 controls expression of ~51% of all genes that define
the M1(LPS+IFN-γ) phenotype. This is consistent with reports that miR-155 is downstream of
several molecules necessary for induction of the M1 phenotype, such as TLRs [50] or Akt2
activity [51]. Expression of M1 markers was also reduced with miR-155 oligonucleotide inhibi-
tors, suggesting a central role of miR-155 in establishing the M1 phenotype. Overall, these data
point to a large and central role of miR-155 in regulating M1 phenotype.

It is still not known how miR-155 regulates inflammatory phenotype but miRNAs generally
suppress gene expression. In WTM1(LPS + IFN-γ) macrophages–in which miR-155 is
strongly induced–we identified 370 predicted or proven miR-155 target genes that are
decreased to some extent. This suggests that the typical M1(LPS + IFN-γ) phenotype requires
direct repression of hundreds of genes by miR-155. Among the most repressed miR-155 targets
we confirmed we found Inpp5d, Tspan14, Ptprj andMafB [52–55]. We hypothesize that sup-
pression of these genes is required for enhancement of M1-promoting pathways such as Akt2
[51] and Notch1 signaling [56,57], as well as inflammatory cytokine production. Supporting
this, loss of Inpp5d/SHIP-1 in macrophages promotes Akt signaling [58]. Ptprj loss also
strongly promotes Akt signaling. Since Akt2 is known to be required for M1 polarization [51],
it is possible that miR-155-mediated suppression of Inpp5d/S and Ptprj in M1(LPS + IFN-γ)
macrophages promotes Akt2 signaling. Interestingly, a miR-155/Akt2 positive feedback loop
may exist, as Akt2 is required for complete miR-155 up-regulation [51]. In Akt2 KO mice,
such lack of miR-155 decreased M1 and promoted M2 phenotype in a CEBPβ-dependent man-
ner [51]. In contrast, we did not observe decreases in CEBPβ in M1macrophages. It is impor-
tant to note that loss of Inpp5d/SHIP-1 had previously been found to be required for M2
differentiation [59] and we confirmed decreases in Inpp5d transcripts occur in both M1 and
M2 cells, indicating that this is a common pathway in activated macrophages. Maf, an experi-
mentally proven miR-155 target [55], may mediate cytokine effects, as it directly represses IL-
12 transcription and indirectly represses other inflammatory cytokines [60]. Accordingly, we
observed a complete lack of expression of IL-12 in any conditions except for WTM1(LPS
+ IFN-γ) macrophages (S3 Table), suggesting this is an important link in inflammatory
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phenotype mediated by miR-155. Finally, the contribution of Tspan14, a transmembrane pro-
tein [61–63], may be mediated by its interactions with ADAM10, which modulates M1-pro-
moting Notch1 signaling [56,57]. Overall, our data support the hypothesis that inflammatory
macrophage phenotype develops as a consequence of miR-155-dependent suppression of
genes that inhibit the M1(LPS + IFN-γ) phenotype.

Interestingly, the down-regulation of several M2 markers that normally occurs during M1
differentiation was dampened in the KOM1(LPS + IFN-γ) macrophages, with a very strong
effect on mannose receptor. The M2-exclusive marker Egr2 [17] was also less suppressed in
miR-155 KO macrophages. However, the level of expression of these markers resembled more
that of an M0 than an M2 macrophage, supporting that miR-155 is required for M1 differentia-
tion and that its loss maintains macrophages in a more M0-like state.

The classical M1 and alternatively activated M2 phenotypes represent in vitro-derived
extremes of a spectrum of in vivomacrophage phenotypes that change as a function of the
inflammatory milieu [6,7,64]. Still, acute inflammatory macrophage responses in vivo express
characteristics of in vitroM1macrophages [17] and these cells are known to play a beneficial
role in fighting infectious agents. However, excessive M1 responses can drive chronic inflam-
mation leading to tissue injury or autoimmune disease [8]. In these scenarios, reducing M1
responses would be a therapeutically desirable option. Our data indicate that miR-155 plays a
critical role in development of inflammatory M1(LPS + IFN-γ) responses, with particular
emphasis on NO and IL-12 signaling pathways. Published data support that miR-155 plays a
similar role in in vivo inflammatory disease models. miR-155 drives the inflammatory effects
of TREM-1 in acute lung injury [65], mediates TNF-α, IL-1β and ROS in ischemia reperfusion
injury [66] and promotes autoimmune lupus [67] and inflammation-induced neurological dys-
function [68]. The fact that our in vitro data shows that miR-155 oligonucleotide inhibitors are
capable of producing effects similar to a miR-155 deficiency in macrophages provides promise
for designing therapeutic strategies aimed at dampening inflammatory macrophage-mediated
disease.

In conclusion, we have identified miR-155 as a small RNA that has a critical defining effect
on the inflammatory M1 macrophage response. As a key molecule driving inflammatory mac-
rophage phenotype, miR-155 shows potential as a therapeutic target in a myriad of inflamma-
tory diseases. Conversely, it may be beneficial to enhance miR-155 activity to improve
resistance to infections. Further work to develop drugs or delivery systems that specifically tar-
get miR-155 signaling in macrophages will help translate these promising findings into new
effective therapies.

Supporting Information
S1 Fig. Myeloid cell populations in lymphoid tissues in miR-155 knockout mice. Percentage
of polymorphonuclear leuokocytes (PMNs: Ly6C+Ly6G+), CD11c+ dendritic cells (Ly6C-Ly6G-

CD11chi), monocytes (Ly6G-CD11c- CD11b+Ly6Chi) and macrophages (Ly6G- CD11c-

CD11bhi Ly6Cint) determined using flow cytometry in (A) bone marrow, (B) lymph nodes and
(C) spleen in wild-type (WT, n = 3) and knockout (KO, n = 3) mice. Data from one experiment
representative of 2–3 independent experiments.
(TIF)

S1 Table. Genes increased more than 2-fold in KOM1 vs. KOM0macrophages.
(XLSX)

S2 Table. Genes decreased more than 2-fold in KOM1 vs. KOM0macrophages.
(XLSX)
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