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Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflam-
mation. microRNA (miR)-155–5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p
is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression
of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth
and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates
inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon
growth by �40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult
miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments
conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; �50% more injured KO DRG neurons
expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and
increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion
injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of
activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and
decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target
capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI.
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Introduction
Injured mammalian CNS axons fail to regenerate successfully.
Both neuron-intrinsic and neuron-extrinsic mechanisms con-

tribute to axon regeneration failure. After injury, CNS neurons
fail to upregulate regeneration-associated genes (RAGs), those
genes encoding proteins that promote cytoskeletal dynamics and
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Significance Statement

Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers, including
inflammation. Here, new data show that deleting microRNA-155 (miR-155) affects both mechanisms and improves repair and
functional recovery after SCI. Macrophages lacking miR-155 have altered inflammatory capacity, which enhances neuron survival
and axon growth of cocultured neurons. In addition, independent of macrophages, adult miR-155 KO neurons show enhanced
spontaneous axon growth. Using either spinal cord dorsal column crush or contusion injury models, miR-155 deletion improves
indices of repair and recovery. Therefore, miR-155 has a dual role in regulating spinal cord repair and may be a novel therapeutic
target for SCI and other CNS pathologies.
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growth-associated changes (Skene and Willard, 1981; Jacobson et
al., 1986; Tetzlaff et al., 1991; Bonilla et al., 2002; Mason et al.,
2002; Khazaei et al., 2014). Numerous neuron-extrinsic barriers
also conspire to prevent efficient CNS growth and repair
(McKeon et al., 1991; Bradbury et al., 2002; Brambilla et al., 2005;
Donnelly and Popovich, 2008; Pineau et al., 2010; Alilain et al.,
2011; Gaudet and Popovich, 2014). For example, inflammatory
macrophages can cause axonal injury or inhibit axon regenera-
tion after spinal cord injury (SCI) (Popovich et al., 1997; Kigerl et
al., 2006; Kigerl et al., 2009; Beck et al., 2010; Prüss et al., 2011;
Pool et al., 2012; Kroner et al., 2014). Therefore, therapies that
boost intrinsic axon growth programs or that limit macrophage
inflammatory signaling could improve spinal cord repair (Ko-
bayashi et al., 1997; Popovich et al., 1999; Ramer et al., 2000; Liu
et al., 2010; Sun et al., 2011; Bartus et al., 2014).

MicroRNAs (miRs) are �22-oligonucleotide sequences that tar-
get specific mRNAs for translational repression and/or cleavage. A
key 6- to 7-oligonucleotide “seed sequence” in the miR binds a com-
plementary sequence in the 3�-untranslated region of target mRNAs,
thereby preventing translation (Bartel, 2009). The present study fo-
cuses on miR-155. The MIR155 host gene (MIR155HG) codes for
both miR-155-5p and miR-155-3p and these sequences are con-
served across species, including humans and rodents (Mashima,
2015). Whereas little is known about miR-155-3p, miR-155-5p has
been studied extensively in inflammatory diseases and cancer. In the
CNS, miR-155-5p can be found in microglia/macrophages (Tili et
al., 2007; Cardoso et al., 2012), astrocytes (Tarassishin et al., 2011),
and neurons (Herai et al., 2014). The therapeutic potential of target-
ing miR-155 is exemplified by the fact that miR-155 removal im-
proves repair and recovery in other animal models of CNS
pathology, including amyotrophic lateral sclerosis (Koval et
al., 2013; Butovsky et al., 2015), multiple sclerosis (Murugai-
yan et al., 2011; Moore et al., 2013), and central neuroinflam-
mation (Lopez-Ramirez et al., 2014).

miR-155-5p modulates the stability and translation of
mRNAs implicated in inflammation (Tili et al., 2007; Worm et
al., 2009; Liu et al., 2011b; Fonken et al., 2016) and axon growth
(Wang et al., 2013; Varendi et al., 2014). In macrophages and
microglia, damage- or pathogen-associated molecular patterns
bind toll-like receptors and elicit inflammatory signaling path-
ways (Graff et al., 2012; Freilich et al., 2013; Moore et al., 2013).
Blocking miR-155-5p limits these inflammatory responses in
macrophages (Cai et al., 2012; Nazari-Jahantigh et al., 2012;
Jablonski et al., 2016) and microglia (Cardoso et al., 2012). Al-
though the effects of miR-155-5p on axon growth are unclear,
indirect evidence and in silico prediction models (Lewis et al.,
2003; John et al., 2004; O’Connell et al., 2009; Liu et al., 2011b)
suggest that miR-155-5p could bind various RAG-related mR-
NAs, which could restrict the synthesis of proteins that enhance
axon growth.

Here, we tested the hypothesis that miR-155 deletion re-
duces inflammatory-mediated neurotoxicity and improves
axon growth both by limiting activation of inflammatory
signaling in macrophages and by increasing the expression
of neuron-intrinsic RAGs. New data show that miR-155-
deficient macrophages are less inflammatory and neurotoxic
and promote axon growth through a contact- or proximity-
dependent mechanism. In addition, deleting miR-155 in neu-
rons augments intrinsic axon growth potential both in vitro
and in vivo. Indeed, miR-155 deletion reduced macrophage/
microglia inflammation by 46% with a concomitant increase

in sensory axon growth beyond the lesion epicenter in an in
vivo model of dorsal column SCI in which neuron-intrinsic
axon growth potential was primed using a peripheral condi-
tioning lesion. After SCI, miR-155 deletion reduces intraspi-
nal inflammation, increases neuroprotection, and improves
functional recovery. Together, these data implicate miR-155
as a novel regulator of destructive postinjury neuroinflamma-
tion and as a neuron-intrinsic “regeneration-inhibitory gene.”

Materials and Methods
Animals and surgery
All housing, surgery, and postoperative care conformed to guidelines set by
The Ohio State University Institutional Animal Care and Use Committee.
All animals were fed standard chow and filtered tap water ad libitum and
maintained on a 12:12 light/dark cycle. miR-155 KO mice were a generous
gift from Dr. Caroline Whitacre. All mice used were littermates generated
from crossing heterozygote parents (heterozygotes were offspring of WT �
miR-155 KO breeding pairs: C57BL/6J WT mice: stock 000664; KO mice:
stock 007745, The Jackson Laboratory) (Thai et al., 2007; Gaudet et al.,
2016). For experiments with WT and KO mice (all female), mice from both
genotypes were randomly assigned to experimental groups and individuals
involved in data analysis were blinded to group designations throughout all
stages of the experiment, including animal care, behavior, tissue dissection,
tissue sectioning, imaging, and data analysis. All mice were anesthetized with
an intraperitoneal injection of ketamine (137.5 mg/kg; obtained from The
Ohio State University Department of Pharmacy; JHP Pharmaceuticals) and
xylazine (60 mg/kg; AnaSed, Lloyd Laboratories) and were pretreated with
prophylactic antibiotics (gentamicin sulfate, 5 mg/kg, s.c., in 0.1 ml; Butler
Schein). Postoperative animal care included daily administration of prophy-
lactic gentamicin antibiotic and subcutaneous injection of Ringer’s solution
(2, 2, 1, 1, and 1 ml) for the first 5 d postinjury (dpi) to prevent dehydration.
Bladders were voided manually twice daily. Animals were monitored daily
for infection or signs of abnormal recovery. At the appropriate postinjury
time points, mice were injected with an overdose of ketamine (300 mg/kg)
and xylazine (150 mg/kg) before perfusion with 4% paraformaldehyde.

SCI. Mice were treated with prophylactic antibiotics as above. A T9
laminectomy was performed before SCI. The periosteum, but not the
dura, was removed for all surgeries. Animals were subjected to a moder-
ately severe contusion injury (75 kDyn) using the Infinite Horizons im-
pactor (Precision Systems and Instrumentation). Post hoc analysis of
primary injury data revealed no significant differences in impact force
between groups (WT force: 78 � 1 kDyn, KO force: 76 � 1 kDyn; p �
0.05). Postoperative animal care was completed as described above. To
measure postinjury changes in miR-155-5p expression, 8- to 12-week-
old female C57BL/6J mice (The Jackson Laboratory) were randomized
into uninjured (sham surgery) control or spinal contusion injury groups.
SCI mice survived 1, 3, 7, 14, or 28 dpi (n � 4 per group). For analysis of
functional recovery and lesion morphometrics, a separate group of miR-
155 KO mice and female WT control littermate mice were randomized
into groups and received SCI as described above (n � 11 WT, n � 6 KO;
2–5 months old). Locomotor recovery was assessed before injury and at
1, 4, 7, 10, 14, 21, and 28 dpi using the Basso Mouse Scale (BMS) (Basso
et al., 2006). At 28 dpi, mice were perfused and spinal cords were col-
lected for morphometric and immunohistochemical analyses.

Spinal cord dorsal column injury with sciatic nerve-conditioning lesion. Fe-
male miR-155 KO and WT littermate mice were used (n � 5 WT, n � 9 KO;
2–5 months old) in this experiment. Breeding produces unpredictable male/
female and WT/KO ratios, resulting in unbalanced group sizes. To enhance
the regenerative capacity of sensory axons in the gracile funiculus, mice
received a bilateral sciatic nerve injury (i.e., “conditioning” lesion). Six days
before dorsal column crush injury, sciatic nerves were exposed, tightly li-
gated using 7–0 silk suture (to prevent peripheral axon regeneration and
maintain neuronal growth responses), and then transected distal to the su-
ture. Animals received prophylactic gentamicin sulfate and 2 ml of subcuta-
neous Ringer’s solution and were monitored daily.

Six days after sciatic nerve injury, animals received a C5 spinal dorsal
column crush injury. Mice were anesthetized (see above) and the cervical
spinal cord was exposed. By maneuvering the animal, a space between the
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C5 and C6 lamina was exposed without removing any vertebral lamina.
Using a needle, a small transverse hole was cut in the dura. “Guide” holes
were created by inserting no. 5 forceps at the spinal cord midline, held at
a width of 0.9 –1.0 mm with tips marked to a depth of 600 �m. Next, no.
55 forceps (labeled for depth) were inserted into the holes and closed
for 3 � 10 s, thereby crushing both ascending sensory and descending
corticospinal tract axons in the spinal cord dorsal column. While still
anesthetized, mice received injections of adeno-associated virus 2
(AAV2)– green fluorescent protein (GFP) into both sciatic nerves (prox-
imal to ligation) to label the central projections of sensory axons growing
into/through the lesion site. Mice received �0.5 �l of AAV2-GFP into
each sciatic nerve branch (2 branches per side, so 1 �l of AAV2-GFP per
side) using a Hamilton syringe. In contrast to severe contusion injury
(see below), all animals receiving dorsal column crush injury recover
bladder function within 1 week. Regardless, animals were monitored
daily beyond 1 week for abnormal patterns of recovery from surgery/
injury. All mice were perfused at 32 dpi.

Tissue processing and immunohistochemistry
Under terminal anesthesia, mice were perfused intracardially with PBS
(0.1 M, pH 7.4), followed by 4% paraformaldehyde in 0.1% phosphate
buffer . Fixed spinal cords were placed in 4% paraformaldehyde over-
night and then switched to 30% sucrose the next day before tissue block-
ing. To prepare tissues for cryosectioning, spinal cords and dorsal root
ganglia (DRGs) were flash frozen in optimal cutting temperature com-
pound. Spinal cord tissue (dorsal column injury epicenters) was sec-
tioned horizontally at 12 �m and DRGs were sectioned at 10 �m, then
slides were stored at �20°C. When in a single block, spinal cords from
different time points or treatment groups were randomly distributed
across blocks to ensure uniformity of staining. In addition, to ensure that
all analyses were performed in a blinded manner, animal numbers were
randomized; WT/KO mouse numbers were intermingled and indistin-
guishable without the code. For horizontal spinal cord sections, a PBS
drop was applied to the slide immediately before picking up the section
to prevent tissue folding and bubbles. For immunohistochemistry, slides
were washed with 0.1 M PBS before applying a blocking solution (10%
normal goat serum or 10% normal donkey serum, depending on second-
ary used) for 45 min. Primary antibodies (in 0.1 M PBS 	 0.2% Triton-X)
were applied overnight: rabbit anti-Iba1 (1:1000; 019-19741, WAKO),
rat anti-CD86 (1:100; 553689, BD Biosciences), goat anti-CD206 (1:100;
AF2535, R&D Systems), rabbit anti-GFP (1:500; A11122, Life Technol-
ogies), and chicken anti-GFP (1:500; GFP-1020, Aves). The next day,
slides were washed 3 times with PBS and then the following secondary
antibodies (1:500 in PBS/0.2% Triton X-100) with DAPI were added for
2 h: Alexa Fluor 546-conjugated goat anti-rat (A11081), goat-anti-rabbit
(A11035), and donkey anti-goat (A11056); or 488-conjugated goat
anti-rabbit (A11034) and goat anti-chicken (A11039) (all from Life
Technologies). Slides were washed with PBS before coverslipping with
Immu-Mount (9990402, Thermo Scientific).

Image analysis
Images were collected using a Zeiss Axioplan 2 microscope. Confocal
images were taken on an Olympus FV1000 filter confocal microscope.
At the time of analysis, all researchers were blinded with respect to treat-
ment group using random animal numbers that concealed genotype.
Analysis of microscope images (fluorescent density, etc.) was performed
using ImageJ or MetaMorph (Molecular Devices).

Lesion size: spinal contusion injury. Cross-sections were cut every 200
�m rostral and caudal to epicenter, collected on slides, and double
stained with Eriochrome cyanine (myelin) and anti-neurofilament anti-
bodies. The epicenter for each mouse was defined as the spinal cord
section with the least amount of spared myelin and axons. The border
between intact and injured tissue (devoid of staining or exhibiting clear
pathology) was identified and quantified at each level using the Cavalieri
method, as described previously then were analyzed as described previ-
ously (Kigerl et al., 2006; Howard and Reed, 1998).

Iba1 and CD16/32 analyses in contused spinal cord. Three to four im-
ages of both lesion epicenter and rostral dorsal columns (just rostral to
frank lesion) were collected for each mouse with contusion SCI. Within

these regions, computerized image analysis (MetaMorph) was used to
threshold pixel area that was positively stained for Iba1 or CD16/32.
These data were expressed as a percentage of the total region of interest
(e.g., epicenter or dorsal column area in which image was captured).

DRG analyses: conditioning lesion and dorsal column injury study. Three to
four images per L4 DRG were captured for each marker for all DRG analyses.
Results from each image were averaged for each animal. For assessing RAG
expression, MetaMorph software was used to manually circle DRG neurons
(�100 neurons per DRG per marker). DRG neuron diameter and intensity
of ATF3/GFP or SPRR1A/GFP expression were recorded. The threshold of
RAG or GFP positivity was defined by averaging the intensity of two slightly
negative and two slightly positive neurons for each marker; the average of
these four cells was the threshold of positivity for that image. The percentage
of cells positive for each marker was then recorded. The size distribution of
DRG neuron diameters was transformed using recursive translation, a ste-
reological counting method that reconstructs cell populations based on a size
distribution of analyzed profiles (Rose and Rohrlich, 1988; Ramer et al.,
2001; McGraw et al., 2005). There were no significant differences in the
neuron size distribution (or size distribution of cells expressing the markers)
between genotypes (data not shown). Density of Iba1, CD86, and CD206
was examined by defining a region of interest within areas containing neu-
rons. The image was thresholded for positive labeling and the result was
expressed as a percentage of the total region of interest (Gaudet et al., 2015).

SCI epicenter Iba1 density analysis: conditioning lesion and dorsal col-
umn injury study. For epicenter analysis, only spinal cords sectioned
horizontally were used for analysis (n � 4 WT, n � 8 KO). Three to four
images were captured for each epicenter and then a montage was created
for Iba1 density analysis. Image montages consisted of 20� images
stitched together (Adobe Photoshop 5.0) to allow accurate analysis of
Iba1 density between 2000 �m rostral and 2000 �m caudal to epicenter.
The epicenter was identified and labeled in each section. Using ImageJ
software, Iba1 images were thresholded and then Iba1 density was mea-
sured systematically in 200 �m (rostral– caudal) by 100 �m (lateral)
boxes centered on the midline (where axons also resided). To ensure that
Iba1 measurements were relevant to axon plasticity, only sections con-
taining axons were analyzed. Data from 200-�m-long regions are ex-
pressed as the middle of the region (e.g., a box extending from 0 to 200
�m is expressed as 100 �m in the figure).

Confirming complete injury of sensory axons in dorsal columns: condi-
tioning lesion and dorsal column injury study. Transverse spinal cord sec-
tions rostral (�C2) and caudal (�C8) to injury epicenter were examined
for GFP immunoreactivity. The gracile fasciculus was identified; GFP	
axons were thresholded and the percentage GFP	 area was recorded
(three images rostral and caudal were analyzed in each animal). No
GFP	 axons were identified in the spinal cords of any mouse rostral to
the injury (at the spinal C2 level), confirming that the C5 dorsal column
crush injury successfully severed all ascending GFP	 gracile axons in all
WT and KO animals.

Axon growth/dieback quantification: conditioning lesion and dorsal col-
umn injury study. A montage of four to five images that encompassed the
lesion was created for each animal. ImageJ was used for density analysis of
GFP	 axons. Areas of autofluorescence (defined by conspicuous fluo-
rescent spots/blobs that were clearly not axons present in all three chan-
nels, lacking axon morphology or a DAPI	 nucleus; commonly seen in
lesion epicenters) were removed and then images were thresholded to
identify GFP	 axons. Total GFP	 area was recorded in 200-�m-long
boxes for each image and then added together for each animal. The
GFP	 area was normalized within each animal by expressing GFP	 area
as a percentage of maximal density (100%), which occurred caudal to
epicenter in all animals. Data from 200-�m-long regions are expressed as
the middle of the region (e.g., the box extending from 0 to 200 �m is
expressed as 100 �m in the figure). For location of the farthest rostral
axons, the location (vs epicenter) of 100	 of the most rostral axons was
recorded. The 100 furthest rostral axons were averaged for each animal.

Cell culture and analysis
Bone-marrow-derived macrophage (BMDM) culture. BMDM cultures
were generated as described previously (Longbrake et al., 2007) from 2-
to 5-month-old female WT or miR-155 KO mice. BMDMs were col-

8518 • J. Neurosci., August 10, 2016 • 36(32):8516 – 8532 Gaudet et al. • miR-155 Deletion Improves Spinal Cord Repair



lected from both tibias and femurs using aseptic technique. Marrow
cores were flushed into conical tubes using a syringe with a 26-gauge
needle filled with DMEM (Life Technologies, 10313). Cell suspensions
were centrifuged and the cells were resuspended in red blood cell lysis
solution (0.15 M NH4Cl, 10 mM KHCO3, and 0.1 mM Na2EDTA, pH 7.4)
for 3 min. After a final wash with medium, cells were plated and cultured
in T-75 flasks (8 –10 � 10 6 cells per flask) in 10 ml of DMEM supple-
mented with 20% L-cell-conditioned medium (sL929), 10% fetal bovine
serum (FBS; Life Technologies, 16000-044), 1% Glutamax (Life Tech-
nologies, 35050-061), 1% HEPES (Sigma-Aldrich, H0887), 0.05%
gentamicin (Life Technologies, 15710), and 0.001% -mercaptoethanol.
sL929, which contains macrophage-colony-stimulating factor and is re-
quired to promote differentiation of bone marrow cells into macro-
phages (7–10 d; Burgess et al., 1985). The medium was replaced at 2, 4,
and 6 d after culture. At 7 d after culture, macrophages were scraped and
replated onto 24-well plates (cell lysates and media transfer) or 96-well
plates (macrophage-neuron coculture) at a density of 10 6 cells/ml in
DMEM supplemented with 10% FBS, 1% Glutamax and 1% gentamicin
for 6 –24 h. To elicit macrophage differentiation into M1 or M2 cells, 8 d
after culture, macrophages were exposed to media alone, LPS (100 ng/ml;
Sigma-Aldrich, L2880) plus IFN-� (20 ng/ml; eBioscience, BMS326), or
IL-4 (20 ng/ml; eBioscience, 14-80410-62), respectively, for 24 – 48 h.

Western blot. Cells from WT and miR-155 KO mice were treated with
media, IFN-�/LPS, or IL-4. After 24 h stimulation, macrophages were
washed once with PBS and then lysed and extracted using 100 –150 �l of
RIPA buffer (Pierce, 89900) containing protease inhibitors (Pierce,
87786). For each genotype, n � 6 mice were used. For Ym1 analysis, two
M0 and two M1 samples were not analyzed due to patchy/uneven spots
(e.g., due to air bubbles) on the exposed membrane. Sample protein
concentrations were assessed using the Coomassie Plus Protein Assay Kit
(Pierce, 23236). A total of 20 mg of protein from each sample was diluted
in NuPAGE LDS sample buffer (Life Technologies, NP0008) before be-
ing loaded into a 4 –12% Bis-Tris gel (Life Technologies, NP0336BOX)
and run for 45 min at 200 V. Proteins were transferred to a nitrocellulose
membrane (Bio-Rad, 162-01115) for 80 min at 30 V. The membrane was
blocked with 5% bovine serum albumin (Fisher, BP9703-100) for 45 min
and then incubated overnight at 4°C with primary antibody: mouse anti-
iNOS (1:500; BD Biosciences, 610431); rabbit anti-Ym1 (1:500; Stem Cell
Technologies, 01404); goat anti-arginase-1 (1:500; Santa Cruz Biotech-
nology, sc-18354); goat anti-CD206 (1:500; R&D Systems, AF2535); and
rat anti-�-tubulin (1:80,000; Serotec MCA77G). The next day, the mem-
brane was washed 3 times with PBS/Tween20 before incubating for 2 h at
room temperature with secondary antibodies (all diluted 1:1000): horse-
radish peroxidase (HRP)-conjugated rabbit anti-goat (Jackson Immu-
noresearch, 305-035-003), goat anti-rat (Jackson Immunoresearch, 115-
035-174), and goat anti-mouse (Jackson Immunoresearch, 112-035-003).
Chemiluminescent HRP substrate (Pierce, 34078) was used to develop
the blot, and the membrane was imaged and analyzed on a Kodak Image
Station 4000MM PRO. Band densities were analyzed using ImageJ. For
every marker, expression was normalized to its corresponding �-tubulin
value and the mean of WT media-treated normalized values were set to 1.

DRG neuron culture. DRG neurons from female WT and miR-155 KO
mice were cultured as described previously (Gardiner et al., 2005). Wells
were coated with 100 �l of poly-D-lysine (25 �g/ml; Sigma-Aldrich,
P6407) and laminin (10 �g/ml; Life Technologies, 23017-015) diluted in
deionized water. The next day, wells were washed three times with de-
ionized water before adding neurons. After isolation, DRGs (from 2- to
5-month-old females) were placed in 0.125% collagenase at 37°C/5%
CO2 for 80 min and then incubated in 0.25% trypsin for 20 min. After
removing trypsin, 30% FBS was added to inactivate the enzyme; DRGs
were washed twice with DMEM/F12 (Life Technologies, 21331-020) and
then dissociated by trituration (�15–20 cycles) in 1 ml of DMEM/F12.
Dissociated cells were passed through a 70 �m filter, overlaid onto 2
ml of BSA, and then centrifuged (900 � g, 5 min). DRG neurons in the
pellet were resuspended in “neuron medium”: DMEM/F12 with N2
supplement (Life Technologies, 17502-048), 0.25% Glutamax, and
0.05% gentamicin. Cells were counted and then plated at the appro-
priate density. Neurons cultured alone were plated at 700 cells/well in
a 24-well plate (cross-point analysis; n � 3 WT and n � 4 KO mice) or

a 96-well plate (neurite initiation and longest neurite analysis; n � 4
per genotype) for 24 h.

Macrophage and DRG neuron coculture. In 4 separate cultures (n � 4
females per genotype, cells from individual mice grown separately for
independent replicates), differentiated macrophages were plated in un-
coated 96-well plates. At 8 d after culture, macrophages were stimulated
with media or 2� M1/M2 factors (200 ng/ml LPS 	 40 ng/ml IFN-�; 40
ng/ml IL-4) in 100 �l of per well neuron media for 4 – 6 h. During this
time, DRGs were isolated from adult female WT mice. Once DRG isola-
tion and dissociation were completed, 1000 DRG neurons in 100 �l were
plated into each well containing macrophages (thereby diluting M1/M2
factors to 1�). In some experiments, GFP-positive DRG neurons were
plated and imaged at the beginning and end of culture to assess toxicity.
Neurons were cultured at 37°C/5% CO2 for 48 h.

Macrophage-conditioned media transfer. In 3 separate cultures (n � 3
per genotype; all in parallel with cocultures for direct comparison; cells
from individual mice were grown in separate wells to maintain indepen-
dent replicates), differentiated macrophages were cultured in 24-well
plates and stimulated with neuron medium alone, LPS/IFN, or IL-4 be-
ginning �6 h after plating. The next day, WT DRGs were isolated and
plated in poly-D-lysine/laminin-coated 96-well plates at 700 neurons/
well in 100 �l neuron medium. At 24 h after stimulation (�40 – 60 min
after neuron plating), media from WT and miR-155 KO macrophages
were collected, centrifuged at 10,000 � g for 10 min to remove cells/
debris, and then 100 �l of the medium was added to wells containing
neurons. Cell lysates and surplus media were collected for protein anal-
ysis and Griess assays. Neurons were incubated for 48 h before fixation.

Neurite outgrowth and neurotoxicity assays. After 24 or 48 h, neurons
(and macrophages, when present) were fixed in 4% paraformaldehyde
(20 –30 min) and stored in PBS. For imaging and analysis, rabbit anti-
�III-tubulin (Sigma-Aldrich, T2200) with Alexa Fluor 488-conjugated
secondary antibodies (Life Technologies, A-11008) and DAPI were used.
Neurite outgrowth was imaged (ThermoScientific, ArrayScan XTI) and
then the length of the longest neurite, the percentage of cells bearing
neurites, and cell survival were measured using MetaMorph. Thirty-five
to 50 cells from each animal were examined for all analyses. For the
proportion of cells with neurites, the number of cells with neurites per
well was divided by the total number of cells per well (as defined by
�III-tubulin-positive cells with DAPI	 nuclei). For the longest neurite,
12–15 images per well were collected and then the longest neurite was
measured. Sholl (branching) analysis was completed using MetaMorph,
as described previously (Gensel et al., 2010), and the number of cross
points at defined distances from the cell body was determined. For cell
survival, the cells in the well were counted at initial culture (40 min after
plating) and at fixation (48 h after plating); data ae expressed as percent-
age survival. Analysts were blinded using coded image names.

Statistics
Immunohistological, morphometric, and gene expression levels were an-
alyzed using one- or two-way ANOVA, followed by Holm–Sidak post hoc
tests. In experiments with two groups, a Student’s t test (or nonparamet-
ric Mann–Whitney U test) was performed. SigmaPlot 12.0 (SPSS) was
used to analyze these data. Spontaneous recovery of locomotor function,
as measured using BMS scores, follows a nonlinear pattern. Therefore, a
nonlinear model was used to fit a regression equation with the form of an
exponential curve as we have described previously (Jones et al., 2002). In
this case, we used the equation: BMS � � 	 �exp(� � dpi) (Stevens,
1951), where � is the asymptotic value that BMS reaches, � is the change
in BMS as dpi moves from 0 to 
, and � is the reduction (should be
negative) in deviation of BMS from its asymptote for a given change in
dpi. The BMS of left and right paws were averaged; one WT animal was
removed based on Grubbs’s method of detecting outliers. Average BMS
scores were analyzed using a nonlinear mixed-effect model using the
procedure of nlmixed in SAS 9.4. Results were considered significant
when p � 0.05. All data, with the exception of BMS data, are plotted as
mean � SEM. For BMS data, the model fit showing mean group values
and raw data are plotted together.
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Results
Macrophage miR-155-5p is markedly
increased by inflammatory stimuli
Macrophage and microglia effector func-
tions are dictated by the signals that
they receive in their microenvironment.
Macrophages that contribute to secondary
neurodegeneration or that inhibit axon
growth/plasticity after SCI do so after expo-
sure to inflammatory stimuli, either in vivo
within the lesion microenvironment or us-
ing in vitro models (Popovich et al., 1999;
Horn et al., 2008; Kigerl et al., 2009). To de-
termine whether inflammatory signaling
regulates miR-155-5p in macrophages, WT
BMDMs were stimulated for 24 h with con-
trol medium or canonical inflammatory
stimuli (IFN-� 	 LPS). Expression of miR-
155-5p increased �30-fold (H2 � 7.48;
p � 0.01) compared with unstimulated
macrophages (Fig. 1A). To confirm that
miR-155-5p induction was not a generic re-
sponse to cell activation, separate BMDMs
were stimulated with IL-4, a cytokine that
activates macrophages without eliciting
neurotoxic effector functions (Stein et al.,
1992; Kigerl et al., 2009; Miron et al., 2013).
miR-155-5p was not increased in IL-4-
activated BMDMs (Fig. 1A).

Deleting miR-155 reduces macrophage
inflammatory signaling
To determine the effects of miR-155
deletion on macrophage phenotype and
function, cell lysates were collected from
WT and miR-155 KO macrophages acti-
vated as in Figure 2A. Western blotting for
proteins that define inflammatory “M1”
(iNOS) or alternatively activated “M2”
(Ym1, Arginase-1, CD206) macrophages
revealed expected changes: that is, WT M1
macrophages upregulated iNOS, and WT
M2 macrophages upregulated Ym1, Argi-
nase-1 (Arg1), and CD206 (Fig. 1C,D; data
normalized to �-tubulin). Conversely, in
miR-155 KO macrophages activated by in-
flammatory stimuli, iNOS expression and
downstream release of nitric oxide were re-
duced 41% and 33%, respectively (Fig.
1C,D; F(1,35) � 4.58, p � 0.05; Holm–Sidak
post hoc p � 0.001). In addition, miR-155
KO macrophages expressed higher levels of
Ym1 compared with WT macrophages
(F(1,25) � 4.42; p � 0.05; main effect of ge-
notype; Fig. 1C,D). Other M2 markers, in-
cluding Arg1 and CD206, were increased by
IL-4 in both groups but were unaffected by
miR-155 deletion. These data indicate that
inflammatory signaling is impaired in miR-
155 KO macrophages, but the absence of
miR-155 does not enhance macrophage dif-
ferentiation toward an M2 phenotype.

Figure 1. miR-155 is required for macrophages to acquire an inflammatory phenotype. A, BMDMs stimulated with
IFN-� 	 LPS increase their expression of miR-155 by �3000%. miR-155 expression was not increased by IL-4. B, C, WT
and miR-155 KO macrophages were stimulated with media, IFN-� 	 LPS, or IL-4 for 24 h (loading control: �-tubulin) and
then cell lysates were collected to assess expression of canonical M1 (iNOS) and M2 (Ym1, Arg1, CD206) markers. Inset in C
shows that, consistent with a significant reduction in iNOS, nitric oxide (NO) release was reduced (�30%) in miR-155 KO
macrophages after stimulation with IFN-� 	 LPS. miR-155 KO macrophages also expressed higher levels of Ym1 (*p �
0.05; main effect of genotype). As expected, Arginase-1 and CD206 were significantly increased after activation with IL-4;
however, expression of these M2 markers was not significantly different between genotypes. *p � 0.05 (ANOVA with
Holm–Sidak post hoc test).
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miR-155 KO macrophages support axon growth without
causing neurotoxicity
Inflammatory macrophages can kill neurons (Popovich
et al., 1997; Kigerl et al., 2006; Kigerl et al., 2009; Beck et al.,
2010; Prüss et al., 2011; Pool et al., 2012; Kroner et al., 2014).
To determine whether reduced inflammatory signaling in
miR-155 KO macrophages limits their ability to kill neurons

while also enhancing neurite growth, WT and miR-155 KO
macrophages were left untreated or were exposed to inflam-
matory stimuli as in Figure 1. Five hours later, WT adult
DRG neurons were added to macrophage cultures (Fig.
2A). The percentage of neurons extending neurites, longest
neurite, amount of branching, and neuron survival were
quantified.

Figure 2. miR-155 KO macrophages enhance neurite outgrowth from adult DRG neurons in a coculture model. A, WT or miR-155 KO macrophages were stimulated with media (control) or IFN-�	LPS for
5 h before adding WT DRG neurons (inset, GFP	 neurons growing on macrophages). B–D, At 48 h after initial culture, miR-155 KO macrophages were more supportive of neurite outgrowth. Sholl analysis
showed that miR-155 KO macrophages enhanced neurite outgrowth, particularly in areas close to the cell body (C, overall total branching and individual media/IFN-� 	 LPS Sholl analyses). D, miR-155 KO
macrophages increased neurite initiation, the length of the longest neurite, and neuron survival. *p�0.05 versus the appropriate WT control; †difference versus media-treated WT control. Scale bar, 200�m.
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When in a KO macrophage environment, various indices of
neurite growth were consistently increased compared with
growth with WT macrophages. This effect was independent of
whether macrophages had been exposed to “control” or “inflam-
matory” stimuli. When cocultured with miR-155 KO macro-
phages, neurite branching (F(1,23) � 10.04; p � 0.005), the
percentage of neurons extending neurites (“neurite initiation”;
F(1,23) � 19.59; p � 0.001) and the length of the longest neurite
(F(1,23) � 11.62; p � 0.01) were consistently increased (Fig. 2B–
D). Neuron survival also was enhanced in the presence of
miR-155 KO macrophages (F(1,23) � 6.15; p � 0.05). The neuro-
protective effect of deleting miR-155 in macrophages was partic-
ularly notable under inflammatory conditions (Fig. 2D). WT
inflammatory macrophages were neurotoxic, which corrobo-
rates previous data from our laboratory (Kigerl et al., 2009).

However, unlike those data, inflammatory macrophages did not
enhance neurite growth. Apparent differences between studies
may be explained by key variations in experimental design: the
duration of cell culture was different and this dramatically affects
neurite growth phenotype (Smith and Skene, 1997). In addition,
neurons in these separate studies were exposed to macrophages/
conditioned medium for different durations, which likely affects
neurite growth dynamics and analyses.

To determine whether the growth-permissive environment
created by miR-155 deletion was due to soluble factors released
by macrophages, medium from WT or miR-155 KO macro-
phages was added to WT DRG neurons (Fig. 3). Regardless of
stimulation protocol, neither WT nor KO macrophage condi-
tioned media significantly affected neurite growth compared
with control media (Fig. 3B,C). These data suggest that miR-155

Figure 3. Secreted factors likely do not underlie KO-macrophage-enhanced neurite. Unlike cocultures, in which KO macrophages augment axon growth, transfer of macrophage-conditioned
media (CM) from miR-155 KO macrophages does not enhance neurite outgrowth compared with WT macrophage-CM. A, DRG neurons were cultured in the presence of WT/miR-155 KO
macrophage-CM for 48 h. B, C, miR-155 KO macrophage-CM (control or inflammatory) did not significantly enhance neurite branching, initiation, or length. Scale bar, 200 �m.
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KO macrophages support neurite outgrowth, and perhaps neu-
ron survival, through contact (or close association) with neurons.

miR-155 as a neuron-intrinsic regeneration inhibitory gene
The above data indicate that miR-155 is essential for promoting
the development of inflammatory macrophages and that these
cells can limit various indices of axon growth. However, miR-155
could also affect neuron-intrinsic growth by targeting axon-
growth-related mRNAs. To study the neuron-intrinsic effects of
miR-155, spontaneous neurite outgrowth was measured in WT
and miR-155 KO adult DRG neurons 24 h after plating them
onto an axon growth-permissive poly-D-lysine/laminin substrate
(Fig. 4). Compared with WT neurons, miR-155 KO neurons con-
sistently exhibit more robust “arborizing” neurite growth (Fig.
4A,B; 27% more total cross points; t(5) � �2.65; p � 0.05).

miR-155 KO neurons also extend longer neurites’ the average
longest neurite from KO neurons was 44% longer than from WT
neurons (t(6) � 3.82; p � 0.01; Fig. 4C). In general, more miR-155
KO neurons extended neurites by 24 h (compared with WT),
although this did not reach statistical significance (Fig. 4C). These
data implicate miR-155 as an intrinsic inhibitor of axon growth.

miR-155 deletion increases expression of axon growth-related
proteins and reduces inflammation in DRGs after peripheral
axotomy
The in vivo regenerative potential of injured DRG sensory axons,
both the peripheral and central branches, is influenced by both
neuron-intrinsic and neuron-extrinsic mechanisms (Lu and
Richardson, 1991; Hellal et al., 2011; Sun et al., 2011; Kwon et al.,
2013; Niemi et al., 2013). Given that miR-155 deletion improves

Figure 4. miR-155 KO neurons have greater intrinsic growth potential. A, Representative WT and miR-155 KO DRG neurons at 24 h after culture. B, C, Neurite outgrowth from adult miR-155 KO
neurons is enhanced compared with WT neurons. miR-155 KO neurons had 27% more total cross points (B) and 44% longer neurites (C). The percentage of extending neurites was not significantly
different between strains. *p � 0.05 versus WT control. Scale bar, 100 �m.
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both intrinsic and extrinsic mechanisms of axon growth in vitro
(Figs. 1, 2, 3, 4), we next evaluated the effects of miR-155 deletion
on postinjury expression of axon growth and inflammatory pro-
teins in vivo using a model of spinal cord dorsal column injury.
Dorsal column crush injuries create discrete zones of primary
trauma that are ideal for studying cellular and molecular mecha-
nisms of axon regeneration/plasticity (Kwon et al., 2002). Fur-
ther, the dorsal column crush injury model enables accurate
quantification of axon dieback and axon regeneration from this
discrete injury border (Busch et al., 2011; Evans et al., 2014).

To enhance the regenerative potential of central branches of
DRG sensory axons, WT and miR-155 KO mice received sciatic

nerve conditioning lesions and then 6 d later were subjected to C5
spinal cord dorsal column crush injury (Fig. 5A). AAV2-GFP was
injected into the sciatic nerves immediately after SCI to trace
injured sensory axons from conditioned DRG neurons. Tissue
was collected 32 dpi (38 d after conditioning lesion; Fig. 5A).

SPRR1A and ATF3 proteins have been shown to enhance re-
generation of injured DRG axons (Bonilla et al., 2002; Seijffers et
al., 2007). Neither protein is detectable in uninjured DRG neu-
rons, but both are upregulated in DRG neurons after condition-
ing lesion (Fig. 5B). Although ATF3 expression was increased to a
similar extent in both WT and KO DRG neurons after condition-
ing lesion (�20% of WT and KO neurons were ATF3	), signif-

Figure 5. After conditioning lesion and dorsal column injury, miR-155 KO DRGs show improved intrinsic growth responses of sensory neurons and reduced intraganglionic macrophage activation.
A, Experimental model and timeline for studying DRG responses and sensory axon regeneration. B, A similar proportion of neurons expressed GFP and ATF3 in the DRG of WT and miR-155 KO mice;
however, 44% more miR-155 KO neurons increased expression of the RAG SPRR1A. C, In WT DRGs, large, dense clusters of activated macrophages (arrowheads) accumulated in the DRG and surround
a subset of DRG neurons (e.g., GFP-labeled neurons; arrows; also see inset). In miR-155 KO DRGs, macrophage density was reduced 28% and 47% fewer KO DRGs contained inflammatory foci. D, Both
pro-inflammatory (CD86) and anti-inflammatory (CD206) markers were expressed in these lumbar DRGs. miR-155 KO DRGs reduced CD86 density by 45%. CD206 density was not different between
strains. In all images, blue is nuclear DAPI stain. *p � 0.05 versus WT. Scale bars, 100 �m; inset scale bar, 25 �m.
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icantly more (44%) KO DRG neurons expressed SPRR1A
compared with WT DRG neurons (WT: 20%; KO 29%; t(12) �
�2.29; p � 0.05). GFP expression was not significantly different
between genotypes (�20% of DRG neurons expressed GFP in
both WT and KO mice), indicating that genotype had no effect
on retrograde labeling with AAV2-GFP.

Peripheral nerve lesions elicit inflammation in the affected
DRGs and macrophages are essential for effective regeneration of
injured peripheral axons (Kwon et al., 2013). Accordingly, we
evaluated macrophage responses in L4 DRGs of WT and miR-155
KO mice after sciatic nerve transection (Fig. 5C,D). Iba1	 mac-
rophages accumulated in WT DRGs, including the formation of
focal macrophage aggregates surrounding DRG neurons (arrow-
heads in Fig. 5C,D). In contrast, in miR-155 KO DRGs, Iba1	

macrophage density was reduced 28% (t(26) � 2.32; p � 0.05; Fig.
5C), with 47% fewer miR-155 KO DRGs containing Iba1	 in-
flammatory foci (7/10 WT DRGs had inflammatory foci, whereas
6/18 KO DRGs contained these foci). Macrophages in miR-155
KO DRGs also were less “inflammatory” based on the expression
of canonical phenotypic markers (Fig. 5D); the inflammatory
marker CD86 was reduced by 45% in KO DRGs (t(25) � 2.08; p �
0.05), with a corresponding decrease of �58% in the ratio of
CD86:CD206 (inflammatory:anti-inflammatory markers; t(26) �
3.60; p � 0.001) compared with WT DRGs.

After SCI, miR-155 deletion reduces intraspinal inflammation
and promotes the regeneration of sensory axons
We next determined whether miR-155 deletion also positively
affects intraspinal inflammation and regeneration of sensory ax-
ons within the injured spinal cord. Consistent with the reduced
inflammatory phenotype described in vitro and in DRGs after
peripheral nerve lesion (Figs. 1, 5), miR-155 KO mice had re-
duced Iba1	 macrophage/microglia density in injured spinal
cord dorsal columns (Fig. 6B,B�; F(1,247) � 10.53; p � 0.001;
asterisks, Fig. 6D); Iba1	 density was reduced 46% compared

with comparable regions in injured WT mouse spinal cord
(t(10) � 2.46; p � 0.05; Fig. 6F).

The dystrophic end bulbs of both WT and KO axons were
closely associated with Iba1	 macrophages/microglia (Fig.
6C,C�,D,D�). To determine whether genotype-specific differ-
ences in intraspinal macrophages were associated with differ-
ences in regeneration or degeneration (“dieback”) of sensory
axons, AAV2-GFP was used to trace axons from preconditioned
DRG neurons into the dorsal columns (i.e., gracile fasciculus) of
injured mouse spinal cord. In miR-155 KO spinal cords, GFP	

axon density was increased within 400 �m of the caudal pole of
the lesion (F(9,119) � 18.15; p � 0.001; Fig. 7D,F). Closer to the
lesion (�0 –200 �m), axon density increased further with 5-fold
more GFP labeling in KO than WT spinal cords (WT: 8%; KO:
48%; post hoc p � 0.01); at 200 – 400 �m, KO axon density was
1.5-fold higher than WT density (WT: 22%; KO: 56%; post hoc
p � 0.05). Therefore, the majority of axons undergo dieback after
dorsal column injury (even with conditioning lesion); this
postinjury axon dieback is reduced in miR-155 KO spinal cords.

To differentiate between the effects of miR-155 deletion on
axon dieback compared with axon regeneration, GFP	 axon
density was measured through the lesion site into rostral spinal
cord. In WT spinal cords, conditioning lesions promoted regen-
eration of a subset of axons through the lesion site, but none
extended �400 �m rostral to the lesion (Fig. 7E). Conversely,
axon regeneration was evident beyond this point in half of the
miR-155 KO mice (n � 4/8), with axons extending as far as 1.4
mm past the lesion site (Fig. 7E). Overall, axons in miR-155 KO
mice projected further into the rostral spinal cord (average axon
location relative to the lesion epicenter: KO spinal cord, 	11 �m;
WT spinal cord, �482 �m; t(10) � �2.23; p � 0.05; Fig. 7E).
These data show that dieback of injured sensory axons is reduced
and axon regeneration is improved in miR-155 KO mice after
conditioning lesion plus SCI.

Figure 6. miR-155 deletion reduces intraspinal macrophage activation/accumulation in mice subjected to a peripheral conditioning lesion and spinal cord dorsal column crush injury. miR-155 KO
spinal cord epicenters have reduced density of Iba1	 macrophages/microglia. Top, Overview of Iba1 immunoreactivity in horizontal sections of WT and miR-155 KO dorsal columns. A, A�, WT and
miR-155 KO spinal cords had similar Iba1	 cell densities in rostral dorsal columns. Rostral is to the left; dashed line delineates injury epicenter. B, B�, graphs, miR-155 KO spinal cords had reduced
Iba1	 macrophage/microglial density in the injury epicenter. C, C�, GFP	 axons and endbulbs localized near inflammatory Iba1	 cells. Note the more rostral location of activated macrophages
that colocalize with regrowing axon tips in KO spinal cord. D, D�, Confocal images showing detail of Iba1	 cells and GFP	 axons at the rostral-most front of growing axons. E, In miR-155 KO mice,
Iba1 density was significantly reduced compared with WT mice from 200 �m rostral to 400 �m caudal to injury epicenter. F, Compared with WT mice, Iba1	 cell density in the KO epicenter was
reduced by 46% (quantified between 200 �m and �200 �m). *p � 0.05 versus WT control. R-C, Rostral– caudal axis; R-L, right–left (horizontal axis). Scale bars: top, alternating gray and white
bars, each 400 �m; inset panels, 50 �m.
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miR-155 is upregulated in contused spinal cord; miR-155
deletion is neuroprotective and enhances recovery of
locomotor function
To further evaluate the translational potential of manipulating
miR-155 in vivo after SCI, we first measured postinjury changes
in intraspinal miR-155-5p expression in a more clinically rele-
vant spinal contusion injury model (Fig. 8A). In WT mice, miR-
155-5p increased at 3 dpi (�300% higher than uninjured; p �
0.05) and 14 dpi (�400%; p � 0.01) and remained elevated for at
least 6 weeks (42 dpi; �400%; p � 0.005).

After SCI, a rapid and protracted increase in miR-155-5p in
intraspinal macrophages, neurons/axons, and/or other CNS cells
could affect intraspinal inflammation, lesion pathology, and re-
covery of function. The functional implications of miR-155 de-
letion were determined by comparing lesion pathology and
locomotor recovery after spinal contusion injury in WT and
miR-155 KO mice (Fig. 8B–F). Sparing of spinal cord tissue,
especially in the rostral spinal cord, was enhanced in miR-155 KO
mice after spinal contusion injury (Fig. 8B,C). Compared with

injured WT spinal cords, lesion size in miR-155 KO mice was
reduced throughout the rostral extent of the lesion, suggesting
that miR-155 removal improved neuroprotection.

SCI-induced inflammatory macrophage/microglial reactions
were also reduced in miR-155 KO mice, particularly in the spinal
cord rostral to injury. In the contusion epicenter, immunoreac-
tive densities of Iba1 (a pan-macrophage/microglia marker) and
CD16/32 (an inflammatory marker expressed in macrophages/
microglia) were increased in both genotypes, although there was
a trend for reduced Iba1 density in the lesion epicenter of KO
mice (WT: 40 � 2% vs KO: 33 � 3%; p � 0.07). Next, the dorsal
columns rostral to injury epicenter were examined. Although the
overall density of Iba1	 macrophages was not different between
groups, CD16/32	 microglia/macrophage density was reduced
�40% in KO mouse spinal cord rostral to SCI (WT: 8.9%, KO:
5.2%; p � 0.05; Fig. 8F). These data, which are similar to those
described in vitro (Fig. 1) and in the spinal dorsal column crush
injury model (Figs. 5, 6, 7), indicate that inflammatory signaling
in macrophages is reduced by miR-155 deletion.

Figure 7. miR-155 KO axons show enhanced plasticity and regrowth after peripheral conditioning lesion and spinal cord dorsal column crush injury. Top, Overview of GFP immunoreactivity in
horizontal sections of WT and miR-155 KO dorsal columns. A, A�, Axons at the regenerative front were located further rostral in KO spinal cords. B, B�, Areas containing axon growth cones or end bulbs
in WT and KO mice. C, C�, Axons located in more caudal regions of the injury epicenter. D, Representative thresholded images of GFP	 axons illustrating the enhanced growth of miR-155 KO axons
up to and beyond the injury site (dashed line). E, Translesional extension of the longest-growing axons is increased in miR-155 KO spinal cords. F, In miR-155 KO mice, GFP	 axon density was higher
than in WT mice between 0 and �400 �m from epicenter, suggesting that KOs have improved axon growth and/or reduced dieback. *p � 0.05 versus WT control. R-C, Rostral– caudal axis; R-L,
right–left (horizontal axis). Rostral is to the left; dashed lines identify injury epicenter. Scale bars: Top and D, gray and white bars, each 400 �m; A–C, 50 �m.
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The enhanced neuroprotection in miR-155 KO mice was as-
sociated with improved locomotor recovery after contusion SCI.
Using the BMS locomotor recovery scale, miR-155 KO mice had
improved spontaneous recovery beginning at 4 dpi and extend-
ing until 14 dpi (compared with WT mice; p � 0.05 at all time
points). By 21 and 28 dpi, both WT and miR-155 KO mice had
regained similar levels of locomotor function (Fig. 8D,E); aver-
age BMS scores were �5.5 (some or mostly coordinated stepping
with rotated paw position; Basso et al., 2006). Therefore, in the
contusion lesion model, reduced post-SCI inflammation in miR-
155 KO spinal cords is associated with significant neuroprotec-
tion and recovery of locomotor function.

Discussion
Here, we reveal a novel role for miR-155 in influencing CNS repair
through concurrent regulation of inflammatory signaling and
neuron-intrinsic inhibition of axon growth. In vitro, genetic deletion
of miR-155 reduced inflammatory signaling in macrophages and
improved their ability to support neuron survival and neurite
growth. Neurons lacking miR-155 showed improved intrinsic axon
growth capacity. Using a conditioning lesion plus dorsal column
injury model, miR-155 KO spinal cords had reduced inflammation
and improved axon growth in vivo. Similar benefits of miR-155 de-
letion were observed in mice subjected to a clinically relevant model
of spinal contusion injury; miR-155 deletion improved tissue spar-
ing and reduced inflammatory macrophage/microglial density,
which likely contributed to improved locomotor recovery. To-
gether, these data identify miR-155 as a potential therapeutic target
to improve indices of repair after SCI.

Modifying macrophage-mediated neurotoxicity and repair in
the injured spinal cord via miR-155 deletion
In the injured spinal cord, inflammatory stimuli persist indefi-
nitely and likely exacerbate tissue pathology. Although under-
studied in the context of spinal cord inflammation, miR-155 has
defined roles in eliciting inflammatory changes in macrophages.
Therefore, the sustained increase in expression of miR-155-5p
after SCI could implicate this miR as a robust molecular “ON”
switch for propagating destructive intraspinal inflammation. We
and others have shown that inflammatory signaling potently
activates miR-155-5p in macrophages (Fig. 1; O’Connell et al.,
2007; Ceppi et al., 2009; Cremer et al., 2009). For example,
macrophages activated by extracellular damage- or pathogen-
associated molecules (e.g., tenascin-C or LPS) increase their ex-
pression of miR-155-5p (O’Connell et al., 2007; Piccinini and
Midwood, 2012). Increased miR-155-5p reduces the availability
of anti-inflammatory RNAs (Wang et al., 2010; Martinez-Nunez
et al., 2011), driving the differentiation of macrophages toward
an inflammatory or “classically activated” M1 phenotype. During
peripheral tissue trauma or infection, transient miR-155-5p-
induced M1 macrophage polarization likely assists with tissue
repair and pathogen removal (e.g., miR-155 KO mice are more
susceptible to lung infection; Rodriguez et al., 2007); however,
sustained miR-155 expression may cause chronic inflamma-
tion associated with diseases such as atherosclerosis (Nazari-
Jahantigh et al., 2012) and arthritis (Kurowska-Stolarska et al.,
2011). In the CNS, miR-155-5p is implicated in the onset or
progression of amyotrophic lateral sclerosis (Koval et al., 2013)
and multiple sclerosis (O’Connell et al., 2010; Murugaiyan et al.,
2011; Moore et al., 2013).

The intracellular mechanisms by which miR-155-5p aug-
ments the inflammatory phenotype of macrophages are not clear,
although several validated miR-155-5p mRNA targets encode

anti-inflammatory mediators or immune-regulatory proteins,
including Cebpb, Creb, Bcl6, Sfpi1 (PU.1), Il-13raI, Ship1, and
Socs1 (Vigorito et al., 2007; Lu et al., 2009; O’Connell et al., 2009;
Yin et al., 2010; Liu et al., 2011b; Martinez-Nunez et al., 2011;
Nazari-Jahantigh et al., 2012; Table 1). Therefore, in response to
inflammatory stimuli, preferential degradation of compensatory
anti-inflammatory genes by miR-155 may polarize macrophages
toward an inflammatory phenotype. Previously published data
and the present data support this hypothesis. For example, cul-
tured miR-155 KO macrophages produce lower levels of iNOS
and the free radical nitric oxide, which likely reduces their oxida-
tive and neurotoxic capacity (Fig. 1; also see Pearse et al., 2003; Xu
et al., 2006; David and Kroner, 2011). At rest and in response to
inflammatory stimuli, miR-155 KO macrophages also express
higher mRNA and protein levels of the anti-inflammatory factor
Ym1. These results suggest that KO macrophages’ resting metab-
olism and functions are distinct from those of WT macrophages.
Such differences could explain how miR-155 KO macrophages,
activated by canonical inflammatory stimuli, enhance axon
growth in vitro and in vivo after SCI while simultaneously show-
ing reduced neurotoxicity.

Although miR-155 KO macrophages enhanced in vitro axon
growth, miR-155 KO DRGs and spinal cords had reduced postin-
jury macrophage density that still correlated with improved axon
growth dynamics. Because inflammatory signaling is reduced in
miR-155 KO macrophages (Fig. 1; O’Connell et al., 2007) and
microglia (Cardoso et al., 2012; Butovsky et al., 2015), these KO
cells likely release fewer cytokines and chemokines that induce
proliferation and recruitment of microglia/monocytes after
nervous system trauma. This could explain the reduced postin-
jury density and inflammatory phenotype of macrophages in KO
DRGs and spinal cords (Figs. 5, 6, 7, 8). Deleting miR-155 in
macrophages also could influence inflammation-induced ex-
pression of integrins, netrins, semaphorins or other neuroim-
mune regulatory proteins (e.g., CD200/CD200L, CX3CL1/
CX3CR1) that strongly affect axon guidance and neuronal
function (Togari et al., 2000; Popovich and Longbrake, 2008;
Schmidt and Moore, 2013; Ramkhelawon et al., 2014). Therefore,
manipulating miR-155 (and its downstream signaling) has com-
plex effects on the microenvironment created by activated mac-
rophages. miR-155 deletion likely alters the secretory profile of
macrophages; however, this would not explain how miR-155 KO
macrophages improve axon growth in vitro and in vivo. Other-
wise, transfer of macrophage-conditioned medium would have
been as effective as coculture in promoting neurite outgrowth
(Fig. 2, 3). Instead, miR-155 deletion in macrophages likely alters
the expression of adhesion and/or extracellular matrix molecules,
creating a microenvironment that is less toxic and more permis-
sive for axon growth.

Improving intrinsic neuron growth capacity via
miR-155 deletion
Novel data in this report also implicate miR-155 as a neuron-
intrinsic regulator of axon growth. Using dissociated adult sensory
neurons from miR-155 KO mice, we found that spontaneous axon
growth was enhanced in vitro. Similarly, sensory axons in the injured
spinal cord of miR-155 KO mice regenerated more effectively than
injured WT axons. A peripheral conditioning lesion (Richardson
and Issa, 1984; Neumann and Woolf, 1999) before dorsal column
injury was used to boost the regenerative potential of sensory axons
in the spinal cord of both WT and KO mice. Using this model,
deletion of miR-155 significantly augmented the regenerative re-
sponse of axons (Fig. 5, 6, 7).
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Low intrinsic neuron growth potential contributes to CNS
axon regeneration failure (Ye and Houle, 1997; Plunet et al.,
2002; Liu et al., 2011a; Tom et al., 2013). Unlike injured periph-
erally projecting neurons, which upregulate genes that coordi-
nate axon regeneration (RAGs; e.g., ATF3, SPRR1A, GAP-43,
CAP-23, �-tubulin; Miller et al., 1989; Bomze et al., 2001; Bonilla
et al., 2002; Seijffers et al., 2007), injured CNS neurons do not

initiate intrinsic growth programs. miR-155-5p may prevent or
reduce axon growth by restricting the availability of specific RAG
mRNAs, including Cebpb and Creb (Nadeau et al., 2005; Table 1).
Interestingly, these same genes can also limit inflammatory mac-
rophage activation. Other potential miR-155-5p targets that en-
hance axon growth include BDNF (Varendi et al., 2014) and
Rheb/mTOR pathway mRNAs (Roitbak et al., 2011; Wang et al.,
2013). Together, these data raise the possibility that miR-155 is a
“regeneration-inhibitory gene” in adult neurons that could be
targeted to improve intrinsic axon growth capacity.

Conclusions
Because miRs simultaneously regulate the expression/translation of
hundreds of mRNAs, strategies designed to upregulate or down-
regulate their expression may provide unique control over coinci-
dent mechanisms of CNS pathology and repair. Here, we reveal a
novel role for miR-155 in restricting endogenous spinal cord repair
through detrimental activation of inflammatory signaling and
neuron-intrinsic axon growth inhibition. Future research could
identify factors that regulate miR-155 expression, how miR-155 KO
macrophages affect other CNS cells (glia, endothelia, etc.), and
whether other effector functions regulated by miR-155 are detri-
mental after SCI. Indeed, the immunomodulatory and neuroprotec-

4

Figure 8. Contusion SCI increases expression of miR-155-5p in WT mice and miR-155 dele-
tion promotes neuroprotection, reduces inflammatory macrophage accumulation, and im-
proves spontaneous locomotor recovery. A, After SCI in WT mice, miR-155-5p expression
increases over time after injury, reaching levels �300% above uninjured control by 42 dpi. B,
Eriochrome and neurofilament were used to identify intact myelin and axons, respectively.
miR-155 KO mice had significantly smaller lesions with the most notable changes evident
rostral to injury epicenter: At 600 �m rostral to epicenter, miR-155 KO lesions were 64% smaller
than WT lesions. Colored outlines represent lesion size in every animal examined for each
genotype at 600 �m rostral to epicenter. C, Overall density of inflammatory CD16/32 	 mac-
rophages was reduced by 25% in rostral lesion extensions of miR-155 KO spinal cords, although
overall Iba1 	 macrophage density in this region was not different between KO and WT mice. D,
Beginning at 4 dpi and extending until 14 dpi, spontaneous locomotor recovery was improved
in miR-155 KO mice compared with WT mice. By 21 and 28 dpi, mice in both groups regained
similar levels of locomotor function. Arrowheads, CD16/32 	Iba1 	 cells; arrows, CD16/
32 �Iba1 	 cells. *p � 0.05 versus WT control. Scale bars: C, 100 �m; F, 50 �m; inset, 5 �m.

Table 1. miR-155-5p validated and predicted targets: a partial list

Macrophages Neurons

TFs controlling macrophage phenotype TFs regulating neurite growth
C/EBPb C/EBPb
Spi1 Gene for PU.1 transcription factor Creb1
Creb1 Various eIFs
Bcl6 Adenylate cyclases
Nr1h3 LXRalpha gene Growth factors/receptors
Ppargc1b PPAR, gamma, coactivator 1 beta gene (PGC1beta) BDNF

TNF signaling Ntrk1 (TrkA)
Ikbkg Inhibitor of kappaB kinase gamma gene Gdnf
Traf3 TNF receptor-associated factor 3 gene Gfra1

TGF signaling IGF-2
Igf1r

TGFbeta receptor 2 Axon guidance factors/receptors
Tgf alpha EphB4, B2
Tgfbr1 TGF, beta receptor 1 gene Efna5 Ephrin-A5 gene

Other, pro-inflammatory Sema6c
IL-12 receptor beta 1 Various RPTPs, not sigma
MMP-12 Various MMPs, ADAMs, ADAM-TS Bmpr integrin alpha 3, 4, 5, 6, 8, 9 Various BMP and activin receptors
Ccr7

Other, anti-inflammatory Lama genes Laminin beta and alpha
Il-13RaI Ntn3 Netrin-3 gene
Msr1 Macrophage scavenger receptor 1 (Msr1) Nrcam NRCAM gene
Cd200r3 CD200 receptor 3 gene Tenascin-C
CD200
IL-4Ra
Mrc1, 2 Mannose receptor, C type 1 gene (and 2)
Adpor1 Adiponectin receptor 1 gene

Other, potentially important
Rheb
HMGB1
SHIP1
Socs1
FGF-6
P2rx7
P2rx4

Genes in bold are validated miR-155 targets that could influence inflammation or neuroplasticity. Various databases, including targetscan.org, microrna.org, and mirbase.org, were used to generate lists of targets. These mRNAs have a
sequence in the 3�-UTR that could be bound by the seed region of miR-155. Such binding could reduce translation of these mRNAs.

Sources: https://cm.jefferson.edu/rna22v1.0-mus_musculus/InputController?identifier�mmu-miR-155, http://www.targetscan.org/cgi-bin/targetscan/vert_61/targetscan.cgi?mirg�mmu-miR-155, http://www.microrna.org/ mi-
crorna/getTargets.do?matureName�mmu-miR-155&startIndex�350&organism�10090, http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc�MI0000177.
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tive effects of miR-155 deletion may also benefit SCI-induced
neuropathic pain or autonomic dysfunction (Gris et al., 2004; Det-
loff et al., 2008; Schwab et al., 2014; Allison and Ditor, 2015; Tan et
al., 2015; Brommer et al., 2016; Offiah et al., 2016). Further studies
may also incorporate male mice because miR-155 may have differ-
ent effects on cell metabolism and host physiology in males and
females (Sipski et al., 2004; Furlan et al., 2005; Swartz et al., 2007;
Luchetti et al., 2010; Gaudet et al., 2016).

Our data identify a dual role for miR-155 after SCI: miR-155
both activates inflammatory programs in macrophages and lim-
its neuron-intrinsic axon growth capacity. Therefore, postinjury
removal of miR-155 could simultaneously improve macrophage
and neuron responses to enhance neuroprotection and repair.
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